Firm Heterogeneity and
the Long-Run Effects of Dividend Tax Reform*

François Gourio† and Jianjun Miao‡
November 2006

Abstract

What is the long-run effect of dividend taxation on aggregate capital accumulation? To address this question, we build a dynamic general equilibrium model in which there is a continuum of firms subject to idiosyncratic productivity shocks. This firm heterogeneity generates a cross-sectional distribution of firms, with some firms behaving according to the traditional view of dividend taxation and other firms behaving according to the new view of dividend taxation. Specifically, at any point in time, a firm may lie in one of three finance regimes: dividend distribution regime, liquidity constrained regime, and equity issuance regime. These finance regimes may change over time in response to idiosyncratic productivity shocks. Firms in different finance regimes respond to dividend taxation in different ways. Our model simulations show that when both dividend and capital gains tax rates are cut from 25 and 20 percent, respectively, to the same 15 percent level permanently, the aggregate long-run capital stock increases by about 3 percent.

JEL Classification: E22, E62, G31, G35, H32

Keywords: firm heterogeneity, general equilibrium, finance regime, traditional and new views of dividend taxation

*We thank Russell Cooper, Dean Corbae, Simon Gilchrist, Roger Gordon, Chris House, Bob King, Larry Kotlikoff, Jim Poterba, and seminar participants at the Boston University and the University of Texas at Austin for helpful comments. First version: June 2006

†Department of Economics, Boston University, 270 Bay State Road, Boston MA 02215. Tel.: 617-353-4534. Email: fgourio@bu.edu.

‡Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215. Tel.: 617-353-6675. Email: miaoj@bu.edu.
1 Introduction

Dividends are taxed at both the corporate and personal levels in the United States. This double taxation of dividends may distort investment efficiency. Partly motivated by this consideration, the Bush government enacted the Jobs and Growth Tax Relief Reconciliation Act (JGTRRA) in 2003. This act reduced the tax rates on dividends and capital gains and eliminated the wedge between these two tax rates through 2008. Because one primary goal of JGTRRA is to promote long-run growth and capital formation, these tax cuts could be made permanent. In this paper, we ask the following question: What is the long-run effect of dividend taxation on aggregate capital accumulation?

This question is of significant interest to both economists and policymakers. Economists disagree about the economic effects of dividend taxation on investment. Two views are prevalent.\(^1\) The key consideration is the marginal source of investment finance. Under the “new view,” firms use internal funds and do not raise new equity. Thus, dividend taxation does not influence the user cost of capital and investment (Auerbach (1979a,b), Bradford (1981), and King (1977)). Under the “traditional view,” the marginal source is new equity and the return to investment is used to pay dividends. A dividend tax cut reduces the user cost of capital and hence raises investment. Empirical evidence on these two views is inconclusive. For example, Poterba and Summers (1983, 1985) find evidence supporting the traditional view using data from the United Kingdom. Desai and Goolsbee (2004) find evidence supporting the new view using data from the United States. Auerbach and Hassett (2002) find that in the U.S. data there are both firms behaving according to the new view and firms behaving according to the traditional view. Thus, there is substantial heterogeneity in the data.

Our paper builds on the existing literature on dividend taxation in two distinct ways. First, we embed the traditional single-firm model used in empirical studies in a computable dynamic general equilibrium framework.\(^2\) Second, we incorporate a continuum of heterogeneous firms

\(^1\)There is the third “tax irrelevance” view proposed by Miller and Scholes (1978, 1982). According to this view, marginal investors do not face differential tax rates on dividends and capital gains. Thus, dividend taxation has no effect on investment. This view has been generally rejected by empirical evidence. See Auerbach (2002), Gordon and Dietz (2006), or Poterba and Summers (1985) for an exposition of the three views.

\(^2\)See Auerbach (1979a) for an early overlapping generations model of dividend taxation with a single firm. See Auerbach and Kotlikoff (1987) for an important comprehensive study of fiscal policy in dynamic general equilibrium models. Also, see Barro (1989) and Baxter and King (1993) for a general equilibrium analysis of government purchases and the financing of these purchases.
in the model. These firms are subject to idiosyncratic productivity shocks.3 This firm heterogeneity generates a cross-sectional distribution of firms, with some firms behaving according to the traditional view of dividend taxation and other firms behaving according to the new view of dividend taxation. Specifically, at any point in time, depending on its productivity shock and its capital stock, a firm may be in one of three finance regimes. In the equity issuance regime, the marginal source of finance is new equity, which reflects the traditional view. In the dividend distribution regime, the marginal source of finance is retained earnings, which reflects the new view. Finally, in the liquidity constrained regime, the firm’s investment is limited to the amount of retained earnings. Importantly, because of firm heterogeneity, at any point in time different firms may be in different finance regimes, and hence respond to the dividend tax cut in different ways. By contrast, we show that if there were a representative firm in the economy, then dividend taxation would have no effect on the long-run capital accumulation. This is because the representative firm in the deterministic steady state would behave in the same way as described by the new view.

We use our calibrated model to provide a preliminary evaluation of the long-run effect of the dividend and capital gains tax cuts in 2003.4 We assume that the benchmark tax system in the initial steady state reflects the federal statutory tax rates in 2003 before the tax cuts. Because the redistributive effect of the tax cuts is not our focus of study, we assume that there is a representative household who owns all firms in the model. This household has an average income which falls in the 25 percent federal income tax bracket in 2003. He then faces the 25 percent dividend tax rate and the 20 percent capital gains tax rate under the 2003 tax system before the tax cuts.5 In our baseline model with exogenous leisure, we suppose that the 2003 tax cuts are permanent, lowering both dividends and capital gains tax rates to the 15 percent level. In this case, the long-run aggregate capital stock rises by about 3 percent. When we restrict the tax cut to dividends alone, the effect is much smaller. A permanent reduction of the dividend tax rate from 25 to 20 percent raises the long-run capital stock by about 0.6

3In the empirical industrial organization literature, many researchers (e.g., Syverson (2005)) have found firm level productivity differences are large and persistent.
4The Congressional Budget Office (CBO) uses several models to evaluate JGTRRA. CBO’s (2003) estimates are based on an average of model results using two sets of model inputs with one set reflecting the traditional view and the other set reflecting the new view.
5Although dividend taxes are skewed towards upper income households, our calibrated 25 percent tax rate is not too low since a large share of equity is held by low-tax institutional investors such as pension funds (see Poterba (2004)).
percent. We show that these results are robust to small changes of parameter values and to several extensions of the baseline model when incorporating share repurchases, costly external finance, and endogenous leisure.

We emphasize that the general equilibrium price feedback effect is important for our results. Specifically, the increase in aggregate capital raises the aggregate demand for labor and hence raises the equilibrium wage. The increased wage lowers profits and the returns to investment and thus dampens the positive effect of the dividend and capital gains tax cuts. To assess this dampening effect quantitatively, we fix the wage rate at the level prior to the tax cuts and show that the increase in aggregate capital after the tax cuts in partial equilibrium could be five to ten times larger than that in general equilibrium, depending on different parameter values and different model assumptions.

Our paper is related to a vast literature on investment and dividend taxation in public finance, corporate finance, and macroeconomics. To our knowledge, our paper provides the first computable dynamic general equilibrium model with firm heterogeneity to evaluate JGTRRA. In terms of modeling, our model framework is similar to Gomes (2001), who analyzes the issue of the investment-cash flow sensitivity. \(^6\) Unlike our paper, he does not consider taxes and policy questions. Our paper is also related to House and Shapiro (2006), who analyze the quantitative effects of the timing of the tax rate changes enacted in 2001 and 2003. Unlike our paper, they assume a representative firm in the model and do not consider the question we analyzed here.

The remainder of the paper is organized as follows. Section 2 sets up the model. Section 3 analyzes a single firm’s decision problem and the effects of dividend taxation in partial equilibrium. Section 4 provides quantitative results. Section 5 considers several extensions. Section 6 concludes. Technical details and data construction are relegated to appendices.

2 The Model

We embed a standard investment model with adjustment cost widely used in the literature of dividend taxation (e.g., Desai and Goolsbee (2004), Fazzari et al. (1988), and Poterba and Summers (1983, 1985)) in a general equilibrium framework. The model economy consists of a continuum of corporate firms, a representative household and a government. Time is

\(^6\)There is a large empirical literature on the investment-cash flow sensitivity (e.g., Cooper and Ejarque (2003), Fazzari et al. (1988), Gilchrist and Himmelberg (1995), Hennessy and Whited (2006), and Moyen (2004)). This literature argues that external finance is costly because of taxes, asymmetric information and transactions costs.
discrete and denoted by $t = 0, 1, 2, \ldots$. Assume that there is no aggregate uncertainty and that firms face idiosyncratic productivity shocks. Thus, by a law of large numbers, all aggregate quantities and prices are deterministic over time, although at the firm level each firm still faces idiosyncratic uncertainty. We will focus on steady-state stationary equilibrium in which all aggregate variables are constant over time.

2.1 Firms

We begin by describing the firms’ decision problem. Firms are ex ante identical and are subject to idiosyncratic productivity shocks. They differ ex post in that they may experience different histories of productivity shocks. Assume that these shocks are generated by a Markov process with transition function given by $Q : Z \times Z \to [0, 1]$, where (Z, Z) is a measurable space.

In order to focus on the key issue of dividend taxation in the simplest possible way, we make two assumptions. First, we consider flat taxes with full loss offset provisions as in most papers in the literature. In particular, we assume that firms face corporate income tax at the constant rate τ_c, while individuals face constant tax rates τ_d on dividends, τ_i on labor and interest income, and τ_g on accrued capital gains.\(^7\) Second, we abstract from debt and assume that firms are all equity financed as in Auerbach and Hassett (2002), Desai and Goolsbee (2004), and Poterba and Summers (1985). One may argue that firms should use all debt to finance investment since debt has a tax advantage. However, debt is also costly since it may cause default and bankruptcy. Thus, firms may still rely on equity finance, as observed in practice. Incorporating debt financing would complicate our analysis since we may add debt as an additional state variable in the dynamic programming problem (8) below.\(^8\)

Because all firms are ex ante identical, we first consider a single firm’s decision problem and then study aggregation. In order to formulate this problem, we first derive the firm’s equity valuation equation. Let the ex-dividend equity value be P_t at date t. In equilibrium, the following no arbitrage equation must hold:

$$R_t = \frac{1}{P_t} E_t \left[(1 - \tau_d) d_{t+1} + (1 - \tau_g) (P_{t+1}^0 - P_t) \right],$$

where $E_t [\cdot]$ denotes the expectation operator conditional on the firm’s history of idiosyncratic\(^7\)In reality, capital gains are taxed on realization rather than on accrual. Incorporating a realization-based capital gains tax would complicate our analysis and is not important in this context.\(^8\)A simple way to incorporate debt financing is to assume that a fixed fraction of investment is financed by debt as in Poterba and Summers (1983).
shocks, R_t denotes the required return to equity, d_{t+1} is the firm’s dividend payment, and P_{t+1} is the period $t+1$ value of shares outstanding in period t. The firm may issue new shares or repurchase old shares. Thus, equity value at date $t+1$ satisfies $P_{t+1} = P_{t+1}^0 + s_{t+1}$, where s_{t+1} denotes issued new shares (repurchases) if $s_{t+1} \geq 0$. Many researchers argue that external equity financing is costly due to asymmetric information or transactions costs. In the baseline model here, we do not consider such costly external financing. Instead, we consider this issue in Section 5.2.

We will show later that since there is no aggregate uncertainty, the steady-state equilibrium required return to equity satisfies

$$R_t = (1 - \tau_i) r. \tag{2}$$

where r is the steady-state equilibrium interest rate. Using equations (1)-(2), we can derive

$$P_t [(1 - \tau_i) r + 1 - \tau_g] = E_t [(1 - \tau_d) d_{t+1} + (1 - \tau_g) (P_{t+1} - s_{t+1})]. \tag{3}$$

We define the cum-dividend equity value V_{t+1} as

$$V_{t+1} = P_{t+1} - s_{t+1} + \frac{1 - \tau_d}{1 - \tau_g} d_{t+1}. \tag{4}$$

Using (3), we can then show that

$$V_t = \frac{1 - \tau_d}{1 - \tau_g} d_t - s_t + \frac{E_t [V_{t+1}]}{1 + r (1 - \tau_i) / (1 - \tau_g)}. \tag{5}$$

We will use this equation to formulate the firm’s dynamic programming problem.

The firm combines labor and capital to produce output. Suppose the firm has a decreasing-returns-to-scale production function given by $F(k, l; z)$, where k, l, and z denote capital, labor and productivity shock, respectively. Assume that $F(\cdot)$ is strictly increasing, strictly concave and satisfies the usual Inada condition. We can then derive the operating profit function $\pi (k, z; w)$ by solving the following static labor choice problem

$$\pi (k, z; w) = \max_{l \geq 0} \{ F (k, l; z) - wl \}, \tag{6}$$

where w denotes the wage. This problem gives the labor demand $l (k, z; w)$ and the output supply $y (k, z; w) = F (k, l (k, z; w); z)$.

The firm can also make investments x to increase its capital stock so that the capital stock in the next period k' satisfies

$$k' = (1 - \delta) k + x, \tag{7}$$
where $\delta \in (0, 1)$ denotes the depreciation rate. Investments incur adjustment cost. For simplicity, we consider the quadratic adjustment cost function, $\psi x^2 / (2k)$, widely used in the empirical investment literature (e.g., Cooper and Haltiwanger (2005)). The firm’s problem is then to choose investment and financial policies so as to maximize its equity value.

Let $V(k, z; w)$ denote equity value at the state (k, z) given that the equilibrium steady-state wage rate is w. Then by (5), $V(k, z; w)$ satisfies the following Bellman equation:

$$V(k, z; w) = \max_{k', x, s, d} \left\{ 1 - \frac{\tau_d}{1 - \tau_g} d - s + \frac{1}{1 + r(1 - \tau_i)/(1 - \tau_g)} \int V(k', z'; w) Q(z, dz') \right\},$$

subject to (7) and

$$x + \frac{\psi x^2}{2k} + d = (1 - \tau_c) \pi(k, z; w) + \tau_c \delta k + s,$$

$$d \geq 0,$$

$$s \geq 0.$$

Equation (9) describes the flow of funds condition for the firm. The source of funds consists of after-tax profits, depreciation allowances, and new equity issuance. The use of funds consists of investment expenditure, adjustment cost, and dividend payments. Dividend payments cannot be negative. We thus impose constraint (10). There may be further constraints on dividend payments. For example, one may assume that the firm should pay a fraction of earnings as dividends (e.g., Auerbach (2002) and Poterba and Summers (1983)). The motivation for such a constraint requires a richer model than the present one, notably asymmetric information or agency conflict between managers and shareholders. Such modeling is beyond the scope of the present paper.

There may also be effective restriction on share repurchases. In the United States, share repurchases are allowed. However, regular repurchases may lead the IRS to treat repurchases as dividends. Also, repurchases may be costly. These costs may be associated with asymmetric information. For simplicity, we follow most papers in the literature to impose constraint (11). Because we rule out share repurchases, the model here cannot address the “dividend

9 Note that we treat the adjustment cost as part of investment expenditures so that it is not tax deductible. One may treat the adjustment cost as part of wage bill so that it is tax deductible. This alternative modeling does not change our key insights.

10 See, for example, Brennan and Thakor (1990) and Barclay and Smith (1988).

puzzle” which asks why firms pay dividends given the tax advantage of share repurchases. In Section 5.1, we will relax this assumption and follow Poterba and Summers (1985) to impose a constraint that share repurchases are bounded by some maximal amount.\footnote{See Gordon and Dietz (2006) for a survey of models for the dividend puzzle.}

By a standard dynamic programming argument as in Stokey and Lucas (1989), one can show that there is a unique value function \(V \) satisfying the Bellman equation (8). Also \(V \) is continuous, strictly increasing, and strictly concave in \(k \). Thus, there exist unique decision rules denoted by

\[
x = x(k, z; w), \quad k' = g(k, z; w), \quad s = s(k, z; w), \quad d = d(k, z; w).
\]

(12)

2.2 Stationary Distribution and Aggregation

Because there is a continuum of firms that are subject to idiosyncratic shocks, there is a cross sectional distribution \(\mu_t \) of firms over the state \((k, z) \). By Stokey and Lucas (1989), the law of motion for the firm distribution is given by

\[
\mu_{t+1}(A \times B) = \int 1_{g(k, z; w) \in A} Q(z, B) \mu_t(dk, dz),
\]

(13)

where \(1 \) is an indicator function, and \(A \) and \(B \) are Borel sets. Note that we suppress the dependence of distributions on the wage \(w \). When \(\mu_{t+1} = \mu_t = \mu^* \), we call \(\mu^* \) the stationary distribution. Given the stationary distribution \(\mu^* \), we can compute the following aggregate quantities:

- aggregate output supply

\[
Y(\mu^*; w) = \int y(k, z; w) \mu^*(dk, dz),
\]

(14)

- aggregate labor demand

\[
L_d(\mu^*; w) = \int l(k, z; w) \mu^*(dk, dz),
\]

(15)

- aggregate investment

\[
I(\mu^*; w) = \int x(k, z; w) \mu^*(dk, dz),
\]

(16)

- aggregate adjustment cost

\[
\Psi(\mu^*; w) = \int \frac{\psi x(k, z; w)^2}{2k} \mu^*(dk, dz).
\]

(17)
2.3 Household

For simplicity, we assume that the representative household supplies labor inelastically at \bar{L}. We will consider endogenous leisure in Section 5.3 and show that our results are robust to this extension. The representative household derives utility from consumption according to the standard time-additive utility function

$$\sum_{t=0}^{\infty} \beta^t U(C_t),$$

where β is the discount factor, C_t denotes consumption, and U satisfies $U' > 0$, $U'' < 0$, and the Inada condition. The household owns all firms and trades firms’ shares. In addition, the household also trades a risk-free bond in zero net supply. He pays dividend taxes, personal income taxes and capital gains taxes. Thus, the budget constraint is given by

$$C_t + \int P_t \theta_{t+1} d\mu_t + b_{t+1}$$

$$= \int \left([(1 - \tau_d) d_t + P^0_t - \tau_g (P^0_t - P_{t-1})] \theta_t d\mu_t + (1 + (1 - \tau_i) r_t) b_t + (1 - \tau_i) w \bar{L} + T_t, \right.$$

where θ_t denotes the shares owned by the household, b_t denotes the amount of bond, r_t denotes the interest rate, and T_t denotes the transfer from the government. In equilibrium, $\theta_t = 1$ and $b_t = 0$.

The household’s problem is to choose consumption and trading strategies to maximize his utility (18) subject to the budget constraint (19). We consider the household problem in a stationary equilibrium in which interest rate r_t and aggregate consumption C_t are constant over time. As in Gomes (2001), one can show that in a stationary equilibrium the intertemporal marginal rate of substitution (the pricing kernel) is equal to β. Thus, the interest rate satisfies

$$\beta (r (1 - \tau_i) + 1) = 1,$$

and the required return to equity is given by (2). As a result, equity value satisfies the valuation equation (3).

In addition, the household’s budget constraint (19) in the steady state becomes

$$C = (1 - \tau_d) \int d(k, z; w) \mu^* (dk, dz) - (1 - \tau_g) \int s(k, z; w) \mu^* (dk, dz)$$

$$+ (1 - \tau_i) w \bar{L} + T.$$

Because labor is exogenous, this equation gives the consumption demand function $C(\mu^*; w)$.
2.4 Government

Because the focus of the paper is on the distortionary effect of dividend taxation on investment, we assume that the tax revenue collected by the government is rebated to the household in a lump-sum manner. Thus, we abstract from the wealth effect and the other distortionary effect associated with using distortionary taxation to finance government spending on goods and services.13 Because the government collects corporate income taxes, dividend taxes, personal income taxes and capital gains taxes, and transfers these tax revenues to the household,14 the government budget constraint is given by

\[T = \tau_c \int (\pi (k, z; w) - \delta k) \mu (dk, dz) + \tau_d \int d (k, z; w) \mu (dk, dz) \]

\[+ \tau_w \bar{L} - \tau_g \int s (k, z; w) \mu (dk, dz). \]

2.5 Stationary Equilibrium

A stationary equilibrium consists of a constant wage rate \(w \), a stationary distribution of firms \(\mu^* \), aggregate quantities, \(C (\mu^*; w) \), \(I (\mu^*; w) \), \(\Psi (\mu^*; w) \), \(Y (\mu^*; w) \), \(L^d (\mu^*; w) \), and decision rules, \(k' = g (k, z; w) \), \(x = x (k, z; w) \), \(s = s (k, z; w) \), \(d = d (k, z; w) \), such that (i) the decision rules solve the firm’s problem (8); (ii) \(C (\mu^*; w) \) is determined by (21); (iii) \(\mu^* \) satisfies equation (13) and aggregate quantities satisfy equations (14)-(17); and (iv) markets clear,

\[L^d (\mu^*; w) = \bar{L}, \]

\[C (\mu^*; w) + I (\mu^*; w) + \Psi (\mu^*; w) = Y (\mu^*; w). \]

3 Analysis of A Single Firm’s Decision Problem

In order to analyze the general equilibrium effects of a dividend tax cut, we first analyze a single firm’s decision problem in partial equilibrium. We thus fix the wage rate and suppress the variable \(w \) throughout this section.

13 Incorporating government spending would complicate our analysis since a tax cut must eventually be financed with some combination of other tax increases or spending cuts. The analysis of how the dividend and capital gains tax cut is financed is beyond the scope of the present paper and is left for future research.

14 According to the US tax system, capital losses are tax deductible within some limit. For tractability, we ignore this limit in our model.
It proves more convenient to rewrite the dynamic programming problem (8) as the following sequence problem:

$$\max_{x_t, k_{t+1}, s_t} E \left[\sum_{t=0}^{\infty} \frac{1}{(1 + r (1 - \tau_i) / (1 - \tau_g))^t} \left(\frac{1 - \tau_d}{1 - \tau_g} d_t - s_t \right) \right],$$ \hspace{1cm} (25)$$

subject to

$$x_t + \frac{\psi x_t^2}{2k_t} + d_t = (1 - \tau_c) \pi (k_t, z_t) + \tau_c \delta k_t + s_t,$$ \hspace{1cm} (26)$$

$$k_{t+1} = (1 - \delta) k_t + x_t, \hspace{1cm} (27)$$

$$d_t \geq 0, \hspace{1cm} (28)$$

$$s_t \geq 0. \hspace{1cm} (29)$$

Let q_t, $\lambda^d_t \geq 0$ and $\lambda^s_t \geq 0$ be the Lagrange multipliers associated with the constraints (27)-(29), respectively. As is well known, q_t can be interpreted as the shadow price of capital and is referred to as the marginal q. Using equation (26) to eliminate d_t, we obtain the following first-order conditions:

$$s_t : \frac{1 - \tau_d}{1 - \tau_g} + \lambda^d_t + \lambda^s_t = 1,$$ \hspace{1cm} (30)$$

$$x_t : q_t = \left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda^d_t \right) \left(1 + \frac{\psi x_t}{k_t} \right),$$ \hspace{1cm} (31)$$

$$k_{t+1} : q_t = \frac{1}{1 + r (1 - \tau_i) / (1 - \tau_g)} E_t \left\{ q_{t+1} (1 - \delta) + \left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda^d_{t+1} \right) \left[(1 - \tau_c) \pi_1 (k_{t+1}, z_{t+1}) + \tau_c \delta \right] + \frac{\psi}{2} \left(\frac{x_{t+1}}{k_{t+1}} \right)^2 \right\}. \hspace{1cm} (32)$$

We also have the usual transversality condition and the complementary slackness condition, which are omitted here for simplicity.

3.1 Financial Policy

We start by analyzing the firm’s financial policy, holding the investment policy fixed. This financial policy is determined by equation (30), which has the following interpretation. Raising one unit of new equity to pay dividends relaxes the dividend constraint and the share repurchase constraint. In addition, the shareholder receives $(1 - \tau_d) / (1 - \tau_g)$ units of after-tax dividends. Thus, the expression on the left side of (30) represents the marginal benefit to the shareholder.
On the other hand, one unit increase in new share lowers equity value by one unit and hence the expression on the right side of (30) gives the marginal cost to the shareholder. Equation (30) requires that the preceding marginal benefit and marginal cost must be equal at optimum.

If \(\tau_d = \tau_g \), then there is no tax differential between dividends and retained earnings. Equation (30) implies that \(\lambda^d_t = \lambda^s_t = 0 \). In this case, the firm’s financial policy is irrelevant. That is, it does not matter for firm value and investment policy how much earnings to retain for use as internal finance, rather than distributing dividends and raising new equity in the external equity market. More formally, in the firm’s problem (25), the payout \(d_t - s_t \) can be determined. However, dividends \(d_t \) and new equity \(s_t \) are indeterminate. This is the celebrated Miller and Modigliani (1961) dividend policy irrelevance theorem.

However, if \(\tau_d \neq \tau_g \), then the firm’s financial policy matters. Because according to the U.S. tax system before the 2003 dividend tax cut the dividend tax rate is higher than the capital gains tax rate, we assume that \(\tau_d > \tau_g \). In this case, it follows from (30) that we cannot have \(\lambda^d_t = \lambda^s_t = 0 \). That is, it is not optimal for the firm to simultaneously issue new equity and distribute dividends. The intuition is simple. New equity or share repurchases change equity value and hence capital gains. Thus, they are taxed at the capital gains rate \(\tau_c \). By contrast, dividends are taxed at a higher rate \(\tau_d \). To maximize equity value, the firm should reduce dividends, but repurchase shares to the extent possible. This implies that one of the constraints (10) and (11) must be binding. This observation gives us three cases to consider. Each case corresponds to a different finance regime.

In the first case, \(\lambda^d_t > 0 \) and \(\lambda^s_t = 0 \). By the complementary slackness condition, \(d_t = 0 \), and \(s_t \geq 0 \). We call this case the equity issuance regime. In this regime, the firm does not have enough internal funds to make investment and distribute dividends. Hence the marginal source of investment finance is the external equity market. This regime reflects the traditional view of divided taxation.

In the second case, \(\lambda^d_t = 0 \) and \(\lambda^s_t > 0 \). The complementary slackness condition implies that \(d_t \geq 0 \) and \(s_t = 0 \). We call this case the dividend distribution regime. In this regime, the firm has enough retained earnings to finance investment and to distribute dividends. The firm does not need to go to the equity market. This regime corresponds to the “new view” of dividend taxation.

In the third case, \(\lambda^d_t > 0 \) and \(\lambda^s_t > 0 \). The complementary slackness condition implies that
$d_t = 0$ and $s_t = 0$. We call this the *liquidity constrained regime*. In this regime, the firm exhausts all internal funds to finance investment and hence does not distribute dividends. In addition, the firm does not issue new equity because the marginal return to investment does not justify the reduction in equity value due to share dilution. In this regime, a windfall addition to current earnings, which conveys no information about the firm’s future profitability, will raise investment. The presence of firms in this regime may account for the excess sensitivity of investment to measures of internal funds.

We should emphasize that finance regimes may change over time because of the stochastic productivity shocks and the intertemporal investment policy. As will be discussed later, this implies that we cannot simply do comparative statics based on the current source of marginal finance only. In addition, in the cross section with firm heterogeneity, different firms may lie in different finance regimes. We next turn to the firm’s investment policy.

3.2 Investment Policy

We first derive a q-theoretic investment equation and then derive the user cost of capital. Based on this derivation, we analyze the effect of dividend taxation on investment in partial equilibrium. This analysis generalizes Auerbach (1979b), Edward and Keen (1984), and Poterba and Summers (1985) to include adjustment cost.

3.2.1 q Theory

Using equation (31), we can derive the investment equation:

$$
x_t = k_t \left(\frac{q_t}{\psi} \left(\frac{1}{1 - \tau_d} + \lambda_t^d \right) - 1 \right).$$

This equation is a simple variant of the estimation equation widely used in the q-theory literature on dividend taxation (Desai and Goolsbee (2004) and Poterba and Summers (1983, 1985)). It highlights the key difference between the traditional and new views of dividend taxation.

According to the traditional view, the marginal source of finance is new equity. In this case, $\lambda_t^d > 0$, $\lambda_t^s = 0$ and $s_t > 0$ for all t. Using equation (30), we can then derive

$$
x_t = k_t \left(\frac{1}{\psi} (q_t - 1) \right).$$

Thus, investment is determined by the point at which the shareholder is indifferent between holding a dollar inside or outside the firm. That is, the firm stops investment when q_t is equal to
1. According to the new view, the marginal source of finance is retained earnings. In addition, the firm distributes dividends and hence \(\lambda_d^t = 0 \) for all \(t \). Equation (33) reduces to

\[
\frac{x_t}{k_t} = \frac{1}{\psi} \left(\frac{1 - \tau_g}{1 - \tau_d} q_t - 1 \right).
\] (35)

Thus, the shareholder will stop investing when he is indifferent between receiving dividends, with value \((1 - \tau_d)\), and having the dollar invested, yielding \((1 - \tau_g)q_t\). That is, he will stop investing when \(q_t = (1 - \tau_d) / (1 - \tau_g) < 1 \).

Given equations (34)-(35), a natural empirical strategy to test the traditional and the new views of dividend taxation is to test which one of these two equations fits the data better (e.g., Desai and Goolsbee (2004) and Poterba and Summers (1983, 1985)). We should emphasize that the assumption underlying the standard \(q \)-theory approach to estimation (Hayashi (1982)) is violated here since we have assumed decreasing returns to scale. Thus, the substitution of average for marginal \(q \) produces a measurement error (Gomes (2001)). As pointed out by Cooper and Ejarque (2003), this misspecification of \(q \)-theory based models implies that any inferences about the size of the quadratic adjustment cost as well as the significance about financial variable may be invalid.

What seems counterintuitive is that under the traditional view tax parameters do not enter (34), but they appear in (35). In fact, the intuition is easy to explain. Solving equation (32) recursively forward and using the law of iterated expectation and the transversality condition, we obtain

\[
q_t = E_t \left[\sum_{j=1}^{\infty} \frac{(1 - \delta)^{j-1} m_{p_{k_{t+j}}} - 1}{(1 + r (1 - \tau_i) / (1 - \tau_g))}{j} \right],
\] (36)

where

\[
m_{p_{k_{t+j}}} = \left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda_{t+j}^d \right) \left[(1 - \tau_c) \pi_1 (k_{t+j}, z_{t+j}) + \tau_c \delta + \psi x_{t+j}^2 / (2k_{t+j}^2) \right].
\] (37)

This equation simply says that marginal \(q \) reflects the firm’s marginal valuation. Thus, a change in dividend tax rate changes \(q \) and hence influences investment under the traditional view. However, under the new view, dividend taxes are fully capitalized in equity value (\(\lambda_{t+j}^d = 0 \) for all \(j \)), and thus the dividend tax parameter in \(q \) fully offsets the factor \((1 - \tau_g) / (1 - \tau_d)\) in (35). This implies that dividend taxation has no effect on marginal investment.

To formalize the above intuition more transparently, we use equations (31)-(32) to obtain
the optimality condition for investment

\[
\left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda_t^d\right) \left(1 + \frac{\psi x_t}{k_t}\right) = \frac{1}{1 + r (1 - \tau_i) / (1 - \tau_g)} \times \\
E_t \left\{ \left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda_{t+1}^d\right) \left[(1 - \tau_c) \pi_1 (k_{t+1}, z) + \tau_c \delta + \frac{\psi}{2} \left(\frac{x_{t+1}}{k_{t+1}}\right)^2 + (1 - \delta) \left(1 + \frac{\psi x_{t+1}}{k_{t+1}}\right)\right] \right\}.
\]

The expression on the left side of (38) represents the marginal cost of investment, while the expression on the right side represents the marginal benefit from investment.

From equation (38), we can see clearly that if the marginal source of finance does not change in two adjacent periods, i.e., \(\lambda_t^d = \lambda_{t+1}^d\), then dividend tax does not influence investment policy at date \(t\), ceteris paribus, since the factors \((1 - \tau_d) / (1 - \tau_g) + \lambda_t^d\) and \((1 - \tau_d) / (1 - \tau_g) + \lambda_{t+1}^d\) cancel out in equation (38).\(^{15}\) Thus, the condition that the current marginal source of finance is retained earnings is not necessary for the new view of dividend taxation to hold true. Even if the current marginal source of finance is new equity, dividend taxation has no effect on the current marginal investment if the return to investment is used to reduce the next period equity issuance. This point has been made by Edwards and Keen (1984) in a model without adjustment cost.

When the current marginal source of finance is new equity, i.e., \(\lambda_t^d > 0\) and \(\lambda_t^s = 0\), but the return to investment is used to pay dividends, i.e., \(\lambda_{t+1}^d = 0\) and \((1 - \tau_d) / (1 - \tau_g) + \lambda_t^d = 1\) and \((1 - \tau_d) / (1 - \tau_g) + \lambda_{t+1}^d = (1 - \tau_d) / (1 - \tau_g)\) in equation (38). Thus, a decrease in the dividend tax rate \(\tau_d\) raises the after-tax marginal return to investment and hence raises the current investment \(x_t\), ceteris paribus. This result reflects the traditional view of dividend taxation.

When the current marginal source of finance is retained earnings, i.e., \(\lambda_t^d = 0\), but the return to investment is used to reduce equity issuance in the next period, i.e., \(\lambda_{t+1}^d > 0\) and \(\lambda_{t+1}^s = 0\), then \((1 - \tau_d) / (1 - \tau_g) + \lambda_t^d = (1 - \tau_d) / (1 - \tau_g)\) and \((1 - \tau_d) / (1 - \tau_g) + \lambda_{t+1}^d = 1\) in equation (38). Thus, a decrease in the dividend tax rate \(\tau_d\) raises marginal cost and hence reduces investment \(x_t\), ceteris paribus. This result seems counterintuitive. In fact, if the firm uses current retained earnings to finance an additional $1 of investment, then the shareholder loses $\((1 - \tau_d^d)\) of dividends. Thus, a dividend tax cut makes this cost higher, but does not

\(^{15}\)We should emphasize that the firm’s investment policy is dynamic and thus the date \(t\) investment \(x_t\) depends on the date \(t + 1\) investment \(x_{t+1}\). Here we focus on the effect on \(x_t\) (or \(k_{t+1}\)) by holding \(x_{t+1}\) constant. A similar remark applies to the other related analysis within this section.
change the benefit if the return to investment is used to reduce equity issuance in the next period.

Finally, when the firm is in the liquidity constrained regime, we have \(\lambda_t^d > 0 \) and \(\lambda_t^s > 0 \). Then the firm does not raise new equity or pay dividends. Investment is constrained to be the retained earnings, \(x_t = (1 - \tau_c) \pi (k_t, z_t) + \tau_c \delta k_t \), which do not depend on dividend taxation.

Figure 1 illustrates the determination of the optimal investment policy for the case without adjustment cost (\(\psi = 0 \)). When the investment demand is low, as with the MB1 schedule, investment spending can be financed from internal funds, at the expense of extra dividends. The marginal cost is equal to \((1 - \tau_d) / (1 - \tau_g) \). By contrast, for high investment demand, as with the MB3 schedule, the firm raises new equity and the marginal cost is equal to 1. For an intermediate level of investment demand, as with the MB2 schedule, the firm is constrained to invest at the amount of retained earnings \((1 - \tau_c) \pi (k, z) + \tau_c \delta k \). This financing hierarchy may be familiar in the public finance literature (see, e.g., Fazzari et al. (1988) or Auerbach (2002)).

[Insert Figure 1 Here]

3.2.2 User Cost of Capital

We can also analyze the effects of dividend taxation on investment using the user cost of capital framework following Jorgenson (1963). To simplify the analysis, we consider the deterministic case only. We generalize Abel’s (1990) and Jorgenson’s (1963) definition of the user cost of capital to include adjustment cost and dividend taxation. We define the user cost of capital as the cost \(u_t \) such that it is equal to the after-corporate-tax marginal cash flow of an additional unit of capital, i.e.,

\[
u_t = (1 - \tau_c) \pi_1 (k_{t+1}) + \psi \left(\frac{x_{t+1}}{k_{t+1}} \right)^2. \tag{39}\]

Using (32), we can derive that

\[
u_t = \left(\frac{1 - \tau_d}{1 - \tau_g} + \lambda_t^d \right)^{-1} [q_t (r (1 - \tau_i) / (1 - \tau_g) + \delta) - \Delta q_t (1 - \delta) - \delta \tau_c], \tag{40}\]

where \(\Delta q_t = q_{t+1} - q_t \). Thus, the user cost of capital is equal to the sum of the tax-adjusted interest rate, physical depreciation, and the capital loss, minus depreciation allowance. Importantly, it depends on the firm’s dynamic finance regimes as reflected by the marginal \(q \) and the first factor in equation (40).
Substituting equation (31) into (40) yields

\[u_t = \left(\frac{1 - \tau_d}{1 - \tau_g} + \frac{\lambda^d_t}{1 - \tau_g} \right) \left(\frac{1 - \tau_d}{1 - \tau_g} + \frac{\lambda^d_{t+1}}{1 - \tau_g} \right)^{-1} \left(1 + \frac{\psi x_t}{k_t} \right) \left(1 + \frac{r (1 - \tau_i)}{1 - \tau_g} \right) \]

\[- (1 - \delta) \left(1 + \frac{\psi x_{t+1}}{k_{t+1}} \right) - \tau_c \delta. \]

(41)

Removing the expectation operator in equation (38) and using equation (39), we observe that equations (41) and (38) are equivalent. Thus, we may derive essentially identical results based on the effects of dividend taxation on the user cost of capital. Specifically, if the firm’s finance regime does not change in two adjacent periods, then the dividend tax cut does not change the user cost of capital and hence does not change the current investment, as predicted by the new view of dividend taxation. If the firm’s finance regime changes from the equity issuance regime to the dividend distribution regime, then the dividend tax cut reduces the user cost of capital and hence raises the current investment, as predicted by the traditional view of dividend taxation. By contrast, if the firm’s finance regime changes from the dividend distribution regime to the equity issuance regime, then the dividend tax cut raises the user cost of capital and hence lowers the current investment.

Finally, we have pointed out before that if \(\tau_d = \tau_g \), then the Miller-Modigliani dividend irrelevance theorem holds and \(\lambda^d_t = \lambda^d_{t+1} = 0 \). We can then use equation (41) to show that a cut of the common tax rate \(\tau_d = \tau_g \) lowers the user cost of capital and hence raises investment. This result is useful for understanding our policy experiments in Section 4.

3.3 Importance of Firm Heterogeneity

To understand the importance of heterogeneity in determining the steady-state effect of the dividend tax reform, we consider the case where there is only one representative firm in the model described in Section 2. Also we suppose there is no uncertainty. Because aggregate consumption in a steady state is constant over time, equation (20) determines the interest rate. In addition, equations (30)-(32) still describe the representative firm’s first-order conditions, except that we remove the shock variable \(z_t \) and the expectation operator. Because \(k_t = k_{t+1}, \)
\(x_t = \delta k_t, \) and \(\lambda^d_t = \lambda^d_{t+1} \) for all \(t \) in a deterministic steady state, it follows from (38) that the steady-state capital stock \(k^* \) satisfies

\[1 + \psi \delta = \frac{1}{1 + r (1 - \pi_i) / (1 - \tau_g)} \left[(1 - \tau_c) \pi_1 (k^*) + \tau_c \delta + \psi \delta^2 / 2 + (1 + \psi \delta) (1 - \delta) \right]. \]

(42)
This equation implies that in a model without firm heterogeneity, dividend taxation does not influence the steady-state capital stock. This is because the representative firm can finance its investment using retained earnings in the deterministic steady state and its finance regime does not change over time. By contrast, in our model with firm heterogeneity, because of idiosyncratic productivity shocks, firms face different finance regimes and respond to the dividend tax cut in different ways. Thus, the dividend tax cut will influence the steady-state capital stock. In the next section, we analyze its quantitative effects.

4 Quantitative Results

We now turn to the general equilibrium model presented in Section 2. Because this model does not permit a closed-form solution for the stationary equilibrium, we resort to a numerical method to compute the approximate equilibrium. Appendix A details our numerical method.

4.1 Baseline Parametrization

To solve the model numerically, we need to specify functional forms for utility and technology. We also need to assign parameter values. We assume a time period in the model corresponds to one year. We calibrate our baseline model to match some moments obtained from the COMPUSTAT database. The sample period ranges from 1988 to 2002, which corresponds to the period before the dividend tax cut. We do not consider other periods since our tax parameters are not relevant for those periods. Appendix B describes the data construction.

Tax system. It is delicate to calibrate tax rates since in reality they are nonlinear and change each year, while we have assumed constant and flat rates in our model. In order to evaluate the Bush government’s dividend tax reform in 2003, we suppose that the initial steady state tax rates are given by the federal statutory rates in 2003. We thus set the corporate income tax rate $\tau_c = 0.34$. The tax rates on dividends, labor income, and capital gains depend on the individual’s income tax bracket. We suppose the representative household has an average income in the United States, which falls into the lowest of the top four tax brackets at the personal income tax rate $\tau_i = 0.25$. This household faces the capital gains tax rate $\tau_g = 0.20$. Because dividends are taxed at the personal income tax rate, we set $\tau_d = 0.25$.

17
Preferences. We set $U(c) = \ln(c)$. Because we focus on stationary equilibrium and assume fixed labor, preferences do not play an important role in our analysis. Specifying any period utility function U that satisfies the assumption in Section 2.3 does not change our analysis. We choose the discount factor β such that the interest rate r is equal to 0.04 using equation (20). As is standard in the macroeconomics literature, we set $\bar{L} = 0.3$, which is the average fraction of time spent on market work.

Technology. We choose the Cobb-Douglas production function with decreasing returns to scale, $F(k, l; z) = z^{\alpha_k}k^{\alpha_l}$, where $0 < \alpha_k, \alpha_l < 1$ and $\alpha_k + \alpha_l < 1$. We assume that the productivity shock follows the process,

$$\ln z_t = \rho \ln z_{t-1} + \varepsilon_t,$$

(43)

where ε_t is i.i.d. and normally distributed with mean zero and variance σ^2. In appendix C, we detail the procedure for calibrating the parameter values $\alpha_k, \alpha_l, \rho,$ and σ. Following Cooper and Ejarque (2003), Gilchrist and Himmelberg (1995), Hennessy and Whited (2006), we simply set the depreciation rate $\delta = 0.15$.

The final parameter to be calibrated is the adjustment cost parameter ψ. Because the cross-sectional volatility of the investment rate is very sensitive to this parameter, we choose a value to match the cross-sectional standard deviation of the investment rate in our data, which is 0.194. More specifically, for any given value of ψ, we solve the model numerically and obtain the stationary distribution of firms. Using this stationary distribution, we compute the cross-sectional standard deviation of the investment rate in the model. If there were no adjustment cost, our model would imply excessive sensitivity of investment to variations in productivity shocks, which is inconsistent with empirical evidence. Our calibrated value of ψ is equal to 1.15, which is similar to estimates reported by Cummins, Hassett and Hubbard (1994), Gilchrist and Himmelberg (1998), and Gilchrist and Sim (2006). However, this value is higher than the value (0.455) estimated by Cooper and Haltiwanger (2005) and is lower than the value (about 20) estimated in the early investment literature (e.g., Summers (1981)).

In summary, we list the calibrated parameter values in Table 1. In Section 4.6, we conduct a sensitivity analysis for parameters ρ, σ and ψ since these parameter values are important for our quantitative results.
Table 1. Baseline parametrization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate income tax</td>
<td>τ_c 0.34</td>
</tr>
<tr>
<td>Personal income tax</td>
<td>τ_i 0.25</td>
</tr>
<tr>
<td>Dividend tax</td>
<td>τ_d 0.25</td>
</tr>
<tr>
<td>Capital gain tax</td>
<td>τ_g 0.20</td>
</tr>
<tr>
<td>Exponent on capital</td>
<td>α_k 0.30</td>
</tr>
<tr>
<td>Exponent on labor</td>
<td>α_l 0.65</td>
</tr>
<tr>
<td>Shock persistence</td>
<td>ρ 0.76</td>
</tr>
<tr>
<td>Shock standard deviation</td>
<td>σ 0.23</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>δ 0.15</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β 0.97</td>
</tr>
<tr>
<td>Adjustment cost</td>
<td>ψ 1.15</td>
</tr>
</tbody>
</table>

4.2 Baseline Model Results

We suppose that the economy under the parameter values in Table 1 before the tax cuts has reached the steady state. We solve for this steady state numerically. Before reporting aggregate and cross sectional moments, it proves useful to consider first the finance regimes for the firms in the cross section. As analyzed in Section 3, firms in different finance regimes may respond to the dividend tax cut in different ways. Figure 2 illustrates these regimes for the baseline model and reveals a few interesting features similar to those in Gomes (2001). First, firms that are either very small or very productive tap the equity market and do not distribute dividends. They are in the equity issuance regime. Second, firms that are either very large or less productive use internal funds to finance investment and also distribute dividends. They are in the dividend distribution regime. Finally, the remaining firms do not distribute dividends and do not issue new equity. They are in the liquidity constrained regime.

[Insert Figure 2 Here]

Table 2 reports the distribution of firms. This table reveals that there is only a small fraction (23.3 percent) of firms in the equity issuance regime in the steady state. These firms are small and account for a small fraction of employment and output. However these firms account for a lot of investment. These results reflect the fact that most firms do not tap the equity market since equity issuance is costly due to the different tax treatment of capital gains.
and dividends. In addition, those firms that tap the equity market are small and productive, and hence make more investment.

Table 2. Distribution of firms in the baseline model. Relative average size in each regime is computed as the ratio of the average size of the firms within that regime to the average size of all firms. The model parameter values are listed in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Equity issuance regime</th>
<th>Liquidity constrained regime</th>
<th>Dividend distribution regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of firms</td>
<td>0.233</td>
<td>0.390</td>
<td>0.377</td>
</tr>
<tr>
<td>Relative average size</td>
<td>0.474</td>
<td>0.577</td>
<td>1.762</td>
</tr>
<tr>
<td>Share of investment</td>
<td>0.339</td>
<td>0.351</td>
<td>0.310</td>
</tr>
<tr>
<td>Share of labor</td>
<td>0.196</td>
<td>0.234</td>
<td>0.570</td>
</tr>
<tr>
<td>Share of output</td>
<td>0.196</td>
<td>0.234</td>
<td>0.570</td>
</tr>
</tbody>
</table>

Note that the last two rows in Table 2 reveal that the share of labor is the same as the share of output for the firms in each finance regime. The intuition is the following. Given the Cobb-Douglas production function specification, we can show that labor demand and output supply for a firm are given by

\[
l(k, z; w) = \left(\frac{z k^{\alpha k}}{w}\right)^{\frac{1}{1-\alpha}} \left(\frac{\alpha l}{w}\right)^{\frac{1}{1-\alpha}} , \quad y(k, z; w) = \left(\frac{z k^{\alpha k}}{w}\right)^{\frac{1}{1-\alpha}} \left(\frac{\alpha l}{w}\right)^{\frac{\alpha l}{1-\alpha}} .
\]

Thus, shares of output and labor are determined by the same factor \((z k^{\alpha k})^{\frac{1}{1-\alpha}}\).

We now turn to the aggregate and cross-sectional results. Table 3 reports these results. From this table, one can see that our baseline model matches most aggregate and cross-sectional moments reasonably well. However, the model overpredicts the ratio of aggregate dividends to aggregate earnings, perhaps because we abstract from share repurchases, another way of distribution. The model also underpredicts the standard deviation of the ratio of earnings to capital. This could be due to the fact that there are shocks to earnings other than productivity in the data that our model does not capture.

Table 3. Aggregate and cross-sectional moments in the baseline model. The Investment share is taken from the National Income Accounts (BEA) and the other data moments are computed using COMPUSTAT. See Appendix B for the variable definition. Model moments are computed using parameter values listed in Table 1.
4.3 Effects of Dividend Tax Reform

To estimate the quantitative effects of dividend taxation, we consider three policy experiments. These experiments are intended to provide an evaluation of the long-run effects of the dividend and capital gains tax cuts prescribed in JGTRRA. JGTRRA makes two major changes in tax law. First, the capital gains tax is reduced from the previous 20 percent rate for individuals in the top four tax brackets (facing marginal tax rates of 25, 28, 33, and 35 percent) to 15 percent. It is reduced from the previous 10 percent rate for individuals in the lower two tax brackets (facing marginal tax rates of 10 and 15 percent) to 5 percent. Second, dividends are taxed at the same rate as capital gains. In particular, dividends are taxed at the rate of 15 percent for individuals in the top four tax brackets.

Our experiments assume that the tax rate changes are permanent and we focus on the long-run steady-state effects. We begin by the first hypothetical experiment in which we fix the capital gains tax rate at the 20 percent level, while the dividend tax rate is cut to the 22 percent level. Column 2 of Table 4 reports the aggregate results. Because dividends are taxed at a lower rate after this policy, firms distribute more dividends. This result is consistent with economic intuition and empirical evidence reported by Chetty and Saez (2005) and Poterba (2004). Because \((1 - \tau_d) / (1 - \tau_g) < 1 \) after the dividend tax cut in this experiment, outside equity finance is still more costly than internal finance. However, the tax wedge is narrowed. Thus, as revealed in Column 2 of Table 4, firms raise more equity to finance investment after the dividend tax cut.

Table 4. Aggregate effects of the dividend tax reform in the baseline model. When we change tax rates, we fix all other parameter values as in Table 1. All results are measured in percentage change from the initial steady state before the reform.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment share (I/Y)</td>
<td>0.110</td>
<td>0.157</td>
</tr>
<tr>
<td>Aggregate dividends/ aggregate earnings</td>
<td>0.142</td>
<td>0.312</td>
</tr>
<tr>
<td>Aggregate new equity/aggregate investment</td>
<td>0.160</td>
<td>0.131</td>
</tr>
<tr>
<td>Standard deviation of investment rate</td>
<td>0.194</td>
<td>0.199</td>
</tr>
<tr>
<td>Autocorrelation of investment rate</td>
<td>0.631</td>
<td>0.609</td>
</tr>
<tr>
<td>Standard deviation of earnings/capital</td>
<td>0.914</td>
<td>0.274</td>
</tr>
<tr>
<td>Autocorrelation of earnings/capital</td>
<td>0.782</td>
<td>0.625</td>
</tr>
</tbody>
</table>
Column 2 of Table 4 also reveals that the long-run aggregate capital stock, output, consumption, and wage all increase following the dividend tax cut. However, the increase is quite small. This implies that the welfare effect of the dividend tax cut is also small. It can be measured by the increase in consumption, which is only 0.24 percent.

To understand the effect on aggregate capital accumulation, we recall that firm heterogeneity plays a key role. As shown in Section 3.3, if there were no firm heterogeneity, dividend taxes would have no effect on the steady-state capital stock. Table 5 illustrates the importance of firm heterogeneity. Compared with Table 3, Table 5 reveals that after the dividend tax cut, firms are less constrained. That is, some firms in the liquidity constrained regime move to the equity issuance regime and some firms move to the dividend distribution regime. The firms in the equity issuance regime account for most of the increase in investment. These firms’ behavior is consistent with the traditional view of dividend taxation.

Table 5. Firm distribution for $\tau_d = 0.22$ and $\tau_g = 0.20$. The other parameter values are listed in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Equity issuance regime</th>
<th>Liquidity constrained regime</th>
<th>Dividend distribution regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of firms</td>
<td>0.275</td>
<td>0.305</td>
<td>0.420</td>
</tr>
<tr>
<td>Relative average size</td>
<td>0.519</td>
<td>0.534</td>
<td>1.652</td>
</tr>
<tr>
<td>Share of investment</td>
<td>0.432</td>
<td>0.247</td>
<td>0.320</td>
</tr>
<tr>
<td>Share of labor</td>
<td>0.242</td>
<td>0.164</td>
<td>0.594</td>
</tr>
<tr>
<td>Share of output</td>
<td>0.242</td>
<td>0.164</td>
<td>0.594</td>
</tr>
</tbody>
</table>

Turn to the effect of the dividend tax cut on the wage rate. After the dividend tax cut there are more firms in the equity issuance regime and these firms are profitable as illustrated in Figure 2. These firms invest more and demand more labor causing the aggregate demand
for labor to rise. Because we assume that the labor supply is inelastic, the equilibrium wage rate must rise as illustrated in Figure 3. Consistent with this intuition, Column 2 of Table 4 reveals that the wage rate is increased by 0.42 percent after the dividend tax cut.16

We now consider the second policy experiment in which we fix the capital gains tax rate at the 20 percent level, while the dividend tax rate is cut further to the same level. As a result, firms do not face the tax differential cost of external equity finance. Because there is no other friction associated with external equity finance in the baseline model, the celebrated Miller and Modigliani dividend policy irrelevance theorem holds, as analyzed in Section 3.1. Thus, in Column 3 of Table 4, the values of aggregate dividends and new equity are indeterminate. Because firms do not face any financing frictions after the second policy experiment, the long-run aggregate capital stock, output, consumption, and wage all increase more than that in the first policy experiment. In particular, aggregate capital is raised by 0.63 percent, and aggregate output is raised by 0.75 percent. The welfare increase measured by the increase in aggregate consumption is still small at the value of 0.39 percent.

We finally consider the third policy experiment in which both the capital gains tax rate and the dividend tax rate are cut permanently to the same level of 15 percent. Column 4 of Table 4 reports the results. Comparing with the second policy experiment reported in Column 3, we can see that the increases in aggregate capital, output, consumption, and wage are higher. In particular, aggregate capital and welfare measured by consumption increase by 3.12 and 0.64 percent, respectively. We should point out that when the same tax rate on dividends and capital gains are lowered from 20 percent to 15 percent, the previously discussed “reallocation effect” does not play an important role since for both the second and the third policy experiments there is no tax differential in dividends and capital gains. In fact, the economic effect of the tax cut from \(\tau_d = \tau_g = 0.20 \) to \(\tau_d = \tau_g = 0.15 \) is through the after-tax interest rate and hence the user cost of capital. From (8) or (25), we can see that the after-tax interest rate is given by \(r(1 - \tau_l) / (1 - \tau_g) \). Thus, a decrease in \(\tau_g = \tau_d \) lowers the after-tax interest rate and hence the user cost of capital for all firms, as analyzed in Section 3.2.2.

16Note that this increase is the same as that in output. This result can be proved formally using equations (23) and (44).
4.4 Productivity Gains

We have shown that the dividend tax cut stimulates the long-run capital formation in our model with firm heterogeneity. In addition, it leads to reallocation of capital and labor towards more productive firms. In our model, firms with high productivity but with little capital issue new equity, and may pay dividends later on. These firms are responsible for the increase in investment after the dividend tax cut. In addition, capital and labor are reallocated more to these high productivity firms, generating productivity gains from the dividend tax cut.

To gauge the productivity gains quantitatively, we use two measures, aggregate labor productivity \(\frac{Y}{L} \) and total factor productivity \(\frac{Y}{(K^{\alpha_k}L^{\alpha_l})} \). We consider the changes of \(\tau_d \) from 0.25 to 0.22 and 0.20, and fix all other parameter values as in Table 1. Table 6 reports the results. Row 2 of this table reveals that total factor productivity (TFP) increases following the decrease in the dividend tax rate. To see the intuition, we use equation (44) to rewrite TFP as follows

\[
TFP = \frac{Y}{K^{\alpha_k}L^{\alpha_l}} = \frac{\int (zk^{\alpha_k})^{1-\alpha_l} \mu (dk, dz)^{1-\alpha_l}}{\int k^{1-\alpha_l} \mu (dk, dz)} = \frac{E_{\mu} \left[z^{1/\alpha_k} \right]^{1-\alpha_l}}{E_{\mu} \left[k^{\alpha_k} \right]^{1-\alpha_l}},
\]

where \(E_{\mu} \) and \(Cov_{\mu} \) denote, respectively, the expectation and covariance operators for the stationary distribution of firms \(\mu \). The covariance term represents the reallocation effect, which captures the fact that capital may move among firms with different productivity shocks. If there were no reallocation effect, the covariance term would be zero. If, in addition, production had constant returns to scale \(\alpha_k = 1 - \alpha_l \), then TFP would be equal to \(E_{\mu} \left[z^{1/\alpha_k} \right]^{\alpha_k} \), which would not change following a change in the dividend tax rate. However, we have assumed decreasing returns to scale in our model.\(^{17}\) In addition, Row 4 of Table 6 reveals that the correlation between capital and productivity shock is positive and increases following a decrease in the dividend tax rate. Clearly, the higher this correlation, the more efficient the allocation of capital across firms. Thus, we should expect that TFP will increase if the dividend tax rate is lowered. This intuition is confirmed in Row 2 of Table 6.

\(^{17}\)Jermann and Quadrini (2003) use a model with financial frictions and decreasing returns to scale in production to explain the productivity gains in the 1990s. Unlike our model with taxation, they assume financial frictions are generated by the enforcement problem of lending contracts.
Table 6: Productivity gains from the dividend tax cut.

Other parameter values are listed in Table 1.

<table>
<thead>
<tr>
<th>τ_d = 0.25</th>
<th>τ_d = 0.22</th>
<th>τ_d = 0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage change in TFP</td>
<td>0.00</td>
<td>0.33</td>
</tr>
<tr>
<td>Percentage change in Y/L</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>Correlation between ln k and ln z</td>
<td>0.48</td>
<td>0.49</td>
</tr>
</tbody>
</table>

We now turn to Row 3 of Table 6, which reveals that labor productivity (Y/L) increases as the dividend tax rate decreases. To see the intuition, we use equation (44) to compute labor productivity as follows

\[
\frac{Y}{L} = \frac{\int (z k^\alpha z) \frac{1}{1-\alpha} \mu (dk, dz) \left(\frac{\alpha_l}{w} \right)^{1-\alpha_l} \frac{1}{1-\alpha_l}}{\int (z k^\alpha z) \frac{1}{1-\alpha} \mu (dk, dz) \left(\frac{\alpha_l}{w} \right)^{1-\alpha_l}} = \frac{w}{\alpha_l}.
\]

From this equation, we can see clearly that the increase in labor productivity is due to the increase in wage.\(^{18}\) The increase in wage is in turn due to the increase in capital since the latter increase raises the marginal product of labor.

Table 6 also reveals that the magnitude of the productivity gain from the dividend tax cut is small. This may explain why our simulated welfare effect of the Bush tax reform in 2003 is small as reported in Table 4. We should emphasize that the importance of the reallocation effect depends on the size of the adjustment cost. For smaller adjustment costs, the effect of a dividend tax cut on capital accumulation and productivity should be larger since capital is less costly to be reallocated.

4.5 General Equilibrium Effect

To appreciate our general equilibrium model, we conduct a hypothetical experiment by shutting down the price feedback effect. Specifically, we fix the wage rate at the level before the tax reform. At this wage, we use labor demand to determine aggregate employment by ignoring the labor market-clearing condition (23). After solving the firm’s problem, we can derive aggregate investment and aggregate output. We then use the resource constraint to solve for aggregate consumption.

\(^{18}\)This equation and the intuition also hold true for the case with endogenous leisure analyzed in Section 5.3.
Table 7 reports the results. Comparing this table with Table 4 reveals that the increase in capital stock, output and consumption in partial equilibrium after the tax reform is much higher than that in general equilibrium. In particular, when the tax rates on dividends and capital gains are cut to 15 percent, the increase in capital in partial equilibrium is about 6 times as large as that in general equilibrium and the increase in consumption in partial equilibrium is about 23 times as large as that in general equilibrium. This experiment demonstrates that using a partial equilibrium model to conduct policy evaluation can be quite misleading.

Table 7. Aggregate effects in partial equilibrium. The wage rate is fixed at the equilibrium value before tax changes. Other parameter values are listed in Table 1. All results are measured in percentage change from the initial steady state before the tax change.

<table>
<thead>
<tr>
<th></th>
<th>(\tau_g = 0.2), (\tau_d = 0.22)</th>
<th>(\tau_g = \tau_d = 0.2)</th>
<th>(\tau_g = \tau_d = 0.15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>4.83</td>
<td>8.23</td>
<td>17.70</td>
</tr>
<tr>
<td>Output</td>
<td>4.91</td>
<td>8.36</td>
<td>15.70</td>
</tr>
<tr>
<td>Consumption</td>
<td>4.73</td>
<td>8.03</td>
<td>14.97</td>
</tr>
<tr>
<td>Employment</td>
<td>4.91</td>
<td>8.36</td>
<td>15.70</td>
</tr>
</tbody>
</table>

To understand the remarkable difference between the partial and the general equilibrium results, we derive the profit function as follows:

\[
\pi(k, z; w) = (zk^{\alpha_k})^{\frac{1}{1-\alpha_l}} \left(\frac{\alpha_l}{w}\right)^{\frac{\alpha_l}{1-\alpha_l}} (1 - \alpha_l). \tag{47}
\]

Table 7 reveals that labor demand increases in response to the tax cut. Thus, the wage rate should rise after the tax reform in general equilibrium. The preceding equation reveals that the increased wage lowers a firm’s profits and hence its returns to investment. This equilibrium wage feedback effect dampens the increase in investment and hence output in general equilibrium. Table 7 indicates that this feedback effect is quantitatively significant.

4.6 Sensitivity Analysis

Because the parameters of persistence \(\rho\), volatility \(\sigma\), and adjustment cost \(\psi\) are important for our quantitative results, we now conduct sensitivity analysis by changing these parameter values. When we change one of the parameters, we fix the other parameters at the baseline.
values given in Table 1. Table 8 reports aggregate and cross-sectional results for different parameter values.

From this table, we can see the following: When the volatility σ is increased, firms face larger shocks to productivity, which leads them to go more frequently to the equity market and hence raises more new equity. In addition, investment and earnings become more volatile and less persistent since the adjustment is then faster.

An increase in the persistence ρ raises the autocorrelation of the investment rate and the earnings/capital ratio. It also raises the cross-sectional volatility of the investment rate and the earnings/capital ratio. This is because the unconditional variance of the productivity shock, $\sigma^2/(1-\rho^2)$, is also increased when ρ is increased. Thus, firms issue more new equity to finance investment.

The notable effect of an increase in the adjustment cost parameter ψ is to lower the volatility of the investment rate. When ψ is increased from 0.5 to 1.5, the standard deviation of the investment rate is lowered from 0.324 to 0.172. The increase in ψ also raises the persistence of the investment rate since firms are reluctant to adjust investment.

Table 8. Moments for different parameter values. When we change one parameter value, we fix other parameter values as in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>$\rho = 0.6$</th>
<th>$\rho = 0.8$</th>
<th>$\sigma = 0.1$</th>
<th>$\sigma = 0.3$</th>
<th>$\psi = 0.5$</th>
<th>$\psi = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment share I/Y</td>
<td>0.181</td>
<td>0.147</td>
<td>0.184</td>
<td>0.139</td>
<td>0.160</td>
<td>0.154</td>
</tr>
<tr>
<td>Total dividends/total earnings</td>
<td>0.252</td>
<td>0.349</td>
<td>0.254</td>
<td>0.359</td>
<td>0.426</td>
<td>0.287</td>
</tr>
<tr>
<td>Total new equity/total investment</td>
<td>0.007</td>
<td>0.203</td>
<td>0.007</td>
<td>0.226</td>
<td>0.338</td>
<td>0.085</td>
</tr>
<tr>
<td>Standard deviation of investment rate</td>
<td>0.110</td>
<td>0.235</td>
<td>0.090</td>
<td>0.248</td>
<td>0.324</td>
<td>0.172</td>
</tr>
<tr>
<td>Autocorrelation of investment rate</td>
<td>0.494</td>
<td>0.625</td>
<td>0.657</td>
<td>0.573</td>
<td>0.540</td>
<td>0.624</td>
</tr>
<tr>
<td>Standard deviation of earnings/capital</td>
<td>0.251</td>
<td>0.274</td>
<td>0.114</td>
<td>0.381</td>
<td>0.237</td>
<td>0.291</td>
</tr>
<tr>
<td>Autocorrelation of earnings/capital</td>
<td>0.492</td>
<td>0.660</td>
<td>0.699</td>
<td>0.569</td>
<td>0.610</td>
<td>0.629</td>
</tr>
</tbody>
</table>

Table 9 reports the results when the tax rates are cut to $\tau_d = \tau_g = 0.15$. This table reveals that our estimates of the effects on capital, output and consumption in the baseline model are not very sensitive to the choice of parameter values. In particular, for a wide range of parameter values, the steady-state capital stock and output increase by about 3 percent and 1 percent, respectively. Notably, the steady-state increase in consumption is below 1 percent. We should
also point out that when the adjustment cost parameter is small ($\psi = 0.5$), the reallocation effect and productivity gains from the tax cut are large as discussed in Section 4.4. Thus, the resulting increases in aggregate output, capital and consumption are also large.

Table 9. Sensitivity analysis of dividend tax reform for different parameter values.

When we change one parameter value, we fix other parameter values as in Table 1. All results are measured in percentage change from the initial steady state.

<table>
<thead>
<tr>
<th>Parameter Value</th>
<th>Capital</th>
<th>Output</th>
<th>Consumption</th>
<th>Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline parametrization</td>
<td>3.12</td>
<td>1.37</td>
<td>0.64</td>
<td>1.37</td>
</tr>
<tr>
<td>$\rho = 0.6$</td>
<td>2.79</td>
<td>0.87</td>
<td>0.37</td>
<td>0.84</td>
</tr>
<tr>
<td>$\rho = 0.8$</td>
<td>3.43</td>
<td>1.44</td>
<td>0.66</td>
<td>1.44</td>
</tr>
<tr>
<td>$\sigma = 0.1$</td>
<td>2.47</td>
<td>0.86</td>
<td>0.36</td>
<td>0.85</td>
</tr>
<tr>
<td>$\sigma = 0.3$</td>
<td>3.72</td>
<td>1.47</td>
<td>0.68</td>
<td>1.45</td>
</tr>
<tr>
<td>$\psi = 0.5$</td>
<td>4.34</td>
<td>1.88</td>
<td>0.86</td>
<td>1.88</td>
</tr>
<tr>
<td>$\psi = 1.5$</td>
<td>2.81</td>
<td>1.18</td>
<td>0.55</td>
<td>1.16</td>
</tr>
</tbody>
</table>

5 Extensions

Our baseline model has a few limitations. First, we do not allow for share repurchases. Second, except for the tax cost, there is no other cost associated with external equity finance. Finally, we assume fixed labor supply. We now relax each of these three assumptions. Our simulations indicate that these extensions do not change our previous quantitative results significantly.

5.1 Share Repurchases

Share repurchases are allowed in the United States. However, repurchases are not free. First, regular repurchases may lead the IRS to treat repurchases as dividends. Second, there may be asymmetric information and transactions costs. To model the costly share repurchases in a simple way, we follow Poterba and Summers (1985) and assume that there is an upper bound on repurchases in that $s \geq s$, where s is a negative number. Note that after one uses this constraint to replace (11), the analysis in Section 3 still goes through with small notational changes. In particular, firms still face three finance regimes: dividend distribution regime ($d > 0, s = s$), equity issuance regime ($d = 0, s > s$), and liquidity constrained regime ($d = 0, s = s$). Moreover, the effect of the dividend tax cut is qualitatively the same.
Compared to the baseline model without share repurchases, the model here implies that firms can avoid the more costly dividend distribution by repurchasing shares to the extent possible. Thus, one should expect that firms pay less dividends. To illustrate the effects of share repurchases, we conduct experiments by setting $s = -0.1, -0.2, \text{ and } -0.3$. We also fix the other parameter values as in Table 1. We find that when the share repurchase constraint is gradually relaxed, aggregate output, capital, consumption, equity issuance and earnings are increased, but aggregate dividends are reduced. The intuition is the following. Allowing for share repurchases, firms can use the returns from investment to repurchase shares instead of distributing the more costly dividends. This effectively raises the benefit from investment. Thus, firms have incentives to make more investment and issue more new equity to finance the investment if possible.

We now consider the effect of the dividend tax reform when firms can repurchase shares. We observe that, if both dividend and capital gains tax rates are cut down to the same level, then allowing for share repurchases does not change the equilibrium allocations in the economy after the tax cut. This is because the firm’s financial policy is irrelevant when there is no tax differential between dividends and retained earnings, by the Miller and Modigliani Theorem. Thus, given our discussion in the preceding paragraph, aggregate capital, consumption, and output should increase less than those in the baseline model. Table 10 reports the quantitative results.

Table 10. The effects of dividend tax reform in the model with share repurchase.
We set $s = -0.2$. All other parameter values are listed in Table 1. All results are measured in percentage change from the initial steady state before the tax change.

<table>
<thead>
<tr>
<th></th>
<th>$\tau_d = \tau_g = 0.20$</th>
<th>$\tau_d = \tau_g = 0.15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>0.52</td>
<td>2.97</td>
</tr>
<tr>
<td>Output</td>
<td>0.53</td>
<td>1.13</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.27</td>
<td>0.49</td>
</tr>
<tr>
<td>Wage</td>
<td>0.52</td>
<td>1.14</td>
</tr>
</tbody>
</table>

5.2 Costly External Finance

So far, we have assumed that external equity finance is costly only because of the differential tax treatment of retained earnings and dividends. Many researchers argue that outside equity
markets are costly because of asymmetric information or transactions cost. We now analyze a model with this sort of costly external finance. Following Gomes (2001) and Hennessy and Whited (2005), we assume that the cost of issuing equity s is simply $\phi(s) = \phi_1 s$. When there is a cost of issuing equity, there is an additional wedge between internal and external funds. Thus, one should expect the aggregate effects should be smaller even though the tax wedge is eliminated in our previous policy experiments.

To illustrate this, we conduct the same policy experiments as in Section 4.3 for the linear cost $\phi_1 = 0.03$. Table 11 reports the results. Comparing this table with Table 4, we can see that the effects of the dividend tax reform on capital, output and consumption are smaller in the model with equity issuance cost. Importantly, unlike the baseline model, the Miller and Modigliani theorem is invalid here even when $\tau_d = \tau_g$ due to the equity issuance cost, and thus there is an optimal dividend policy when $\tau_d = \tau_g$. Table 11 shows that when $\tau_d = \tau_g = 0.20$, new equity rises by 56.71 percent, and dividends rise by 7.20 percent. When both rates are further cut down to $\tau_d = \tau_g = 0.15$, dividends are raised by a smaller number of 6.87 percent, while new equity is raised by a larger number of 63.84 percent. The reason is that firms raise more equity and use more retained earnings to finance investment because the user costs of capital for all firms are lower.

Table 11. The effects of dividend tax reform for the model with costly external finance. We set the parameter value for the linear equity issuance costs at $\phi_1 = 0.03$. All other parameter values are listed in Table 1. All results are measured in percentage change from the initial steady state.

<table>
<thead>
<tr>
<th></th>
<th>$\tau_d = \tau_g = 0.20$</th>
<th>$\tau_d = \tau_g = 0.15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>0.39</td>
<td>2.86</td>
</tr>
<tr>
<td>Output</td>
<td>0.63</td>
<td>1.25</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.32</td>
<td>0.56</td>
</tr>
<tr>
<td>Dividends</td>
<td>7.20</td>
<td>6.87</td>
</tr>
<tr>
<td>Equity Issuance</td>
<td>56.71</td>
<td>63.84</td>
</tr>
</tbody>
</table>

5.3 Endogenous Leisure

We have assumed that labor supply is inelastic in order to flesh out intuition in a simple manner. We now generalize the baseline model to allow for endogenous labor supply. Specifically, we
suppose the period utility function takes the form \(U(c, l) = \ln(c) + H \ln(1 - l) \). We then calibrate the parameters \(H \) and \(\psi \) to match the hours spent on working at the value 0.3 and the cross-sectional standard deviation of investment rate at the value 0.194 in the initial steady state. We find \(H = 1.41 \) and \(\psi = 1.20 \). Using these parameter values and other parameter values listed in Table 1, we solve the model again and conduct policy experiments. Table 12 reports the aggregate effects of the dividend tax reform. Comparing with the results for the baseline model with exogenous leisure reported in Table 4, we find that the quantitative results do not change. In addition, quantitative results have a similar magnitude. However, the effects on consumption and output are larger here since the equilibrium employment rises in response to the tax cut. After controlling for changes in labor, we find that welfare measured by consumption increases by 0.43 and 0.72 percent for the two policy experiments in Table 12.

Table 12. **Aggregate effects of the dividend tax reform for the model with endogenous leisure.** Let \(U(c, l) = \ln(c) + H \ln(1 - l) \). Set \(H = 1.41 \) and \(\psi = 1.20 \). All other parameter values are listed in Table 1. All results are measured in percentage change from the initial steady state.

<table>
<thead>
<tr>
<th></th>
<th>(\tau_d = \tau_g = 0.20)</th>
<th>(\tau_d = \tau_g = 0.15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>0.75</td>
<td>3.53</td>
</tr>
<tr>
<td>Output</td>
<td>0.97</td>
<td>1.87</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.63</td>
<td>1.14</td>
</tr>
<tr>
<td>Employment</td>
<td>0.26</td>
<td>0.54</td>
</tr>
<tr>
<td>Labor productivity</td>
<td>0.71</td>
<td>1.32</td>
</tr>
<tr>
<td>Wage</td>
<td>0.71</td>
<td>1.32</td>
</tr>
</tbody>
</table>

The mechanism behind the model with endogenous leisure is similar to that behind the model with exogenous leisure. The only difference lies in the labor market behavior. Figure 4 illustrates the labor market equilibrium. In the figure, the \(L^d_1 \) and \(L^s_1 \) schedules represent labor demand and supply curves before the tax reform, respectively. After the tax reform, labor demand rises so that \(L^d_1 \) schedule shifts to the right. Because after the dividend tax reform the household receives higher payout, the wealth effect implies that the household will consume more and supply less labor. This implies that the \(L^s_1 \) schedule shifts to the left. The new equilibrium is determined by the intersection of the \(L^d_2 \) schedule and the \(L^s_2 \) schedule. It is
clear that the wage rate should go up after the tax cut since the labor demand goes up and the labor supply goes down. However, the effect on the equilibrium labor is ambiguous, depending on the relative magnitude of changes in the labor supply and the labor demand. In all of our numerical experiments, the change in labor demand dominates so that the equilibrium labor rises after the dividend tax reform.

As discussed earlier, the rise in the wage rate after the dividend tax reform in general equilibrium dampens the increase in the capital stock. To assess this general equilibrium feedback effect, Table 13 reports the results when we fix the wage rate at the value before the dividend tax reform. Comparing to the results with exogenous labor, we see that the dampening effect has a similar magnitude.

Table 13. Aggregate effects of the dividend tax reform for the model with endogenous leisure in partial equilibrium. Let $U(c, l) = \ln(c) + H \ln(1 - l)$. Set $H = 1.41$ and $\psi = 1.20$. We fix the wage rate at the equilibrium value before tax changes. All other parameter values are listed in Table 1. All results are measured in percentage change from the initial steady state.

<table>
<thead>
<tr>
<th></th>
<th>$\tau_d = \tau_g = 0.20$</th>
<th>$\tau_d = \tau_g = 0.15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>9.19</td>
<td>19.20</td>
</tr>
<tr>
<td>Output</td>
<td>9.37</td>
<td>17.35</td>
</tr>
<tr>
<td>Consumption</td>
<td>9.03</td>
<td>16.60</td>
</tr>
<tr>
<td>Employment</td>
<td>9.37</td>
<td>17.35</td>
</tr>
</tbody>
</table>

6 Conclusion

In this paper, we build a dynamic general equilibrium model to analyze the long-run effects of the dividend tax reform on aggregate capital accumulation. Firm heterogeneity in productivity and general equilibrium play a key role in our analysis. This firm heterogeneity implies that firms still face idiosyncratic productivity shocks, even though the economy-wide aggregates are constant over time in the long run. Thus, firms may lie in different finance regimes over time and respond to dividend taxation in different ways. In particular, some firms behave
according to the traditional view of dividend taxation and other firms behave according to the new view of dividend taxation. This is in sharp contrast to a model with a representative firm, which implies that dividend taxation has no effect on aggregate capital accumulation in the deterministic steady state as predicted by the new view. We also show that general equilibrium is important for policy analysis. Using a partial equilibrium model may provide very misleading quantitative estimates.

We use our calibrated model to provide an initial quantitative evaluation of the Bush government dividend tax reform in 2003. Our simulations suggest that cutting the dividend tax rate alone raises the long-run capital stock. In addition, it raises total factor productivity and labor productivity. This result is primarily generated by the reallocation effect in our model with tax frictions and decreasing returns to scale in production. When both dividends and capital gains tax rates are cut down to the same level, aggregate effects are much larger. The reason is that the user costs of capital for all firms are reduced and this reduction has a larger effect on capital formation. We also show that when shutting down the price feedback effect in a partial equilibrium model, the increase in capital could be about five to ten times larger, depending on different parameter values and different model assumptions.

One limitation of our model is that we abstract from debt financing. Incorporating debt in the model would generate an interesting debt-equity choice. Another limitation of our model is that we do not study transitional dynamics. Given the fact that the dividend tax cut may be temporary, it would be interesting to analyze both of its temporary and permanent effects. We study this issue in Gourio and Miao (2006). The third limitation is that we have assumed a representative agent in the model. Incorporating household heterogeneity would allow us to provide a more interesting welfare analysis. Finally, we have assumed a very simple government behavior. In future work, we may consider that the government collects taxes and issues debt to finance expenditures. We can then analyze how the dividend tax reform affects budget deficits.

Appendices

A Numerical Method

To solve the model numerically, we proceed in three steps. First, for a given wage, we compute the firm’s optimal decision rules. Next, we compute the stationary distribution. Finally, we check whether the labor market equilibrium condition holds; if not, we adjust the wage and go back to the first step.20 We now provide more details about each step.

Step 1. Starting with a guess of wage, solve the firm’s dynamic programming problem by value function iteration on a grid. We use a grid with 300 points for capital and 10 points for productivity. The grid for capital is finer for low capital values. The lower bound for capital is 0.001 and the upper bound is chosen so that it binds with very small probabilities in a stationary equilibrium. Changes in the grid do not affect the result significantly. The grid for productivity is taken from Joao Gomes’ program, which implements the usual Tauchen and Hussey (1991) approximation for an AR(1) process.

Step 2. After obtaining decision rules from step 1, we solve for the stationary distribution of firms $\mu^*(k, z; w)$. To do so, we simply iterate on equation (13) defined in the main text, starting from a uniform distribution over (k, z).

Step 3. After obtaining the stationary distribution of firms, we obtain the aggregate labor demand $L^d(w) = \sum_{k,z} \mu^*(k, z; w)l(k, z; w)$. We then check whether the labor market clears. There are two cases. In the benchmark calibration, labor supply is fixed, so we need to check that $L^d(w) = 0.3$. In the extension which allows for elastic labor supply, we check whether $U_2(C, L)/U_1(C, L) = (1 - \tau_i)w$, where aggregate consumption C is deduced from the resource constraint and the stationary distribution. If the equilibrium condition is not satisfied, we use the bisection method to update the wage rate and go back to step 1.

Because we solve the model on a grid, the policy function $g(k, z; w)$ is necessarily discontinuous in the Euclidean norm. Hence labor demand can be discontinuous: a small change in the wage can create a discrete jump in $g(k, z; w)$ and thus in $\mu^*(k, z; w)$. This implies we may not be able to make the equilibrium condition hold with arbitrary precision. However, the error in this equilibrium condition is very small for our computations, and is never greater than 10^{-5} in relative term. According to our numerical experiments, a 1 percent change in the wage leads

20Our programs are available at the following web address: http://people.bu.edu/fgourio/research.html
to a change smaller than 10 percent on all the variables. Thus, the precision of our results appears to be no less than 0.01 percent.

B Data Construction

We use the COMPUSTAT Industrial Annual data set from 1988 to 2002 and use the following standard criteria to drop data (see, e.g., Hennessy and Whited (2005)). First, we delete observations of firms whose primary SIC classification is between 6000 and 6999 or between 4900 and 4999, since our model is inappropriate for regulated or financial firms. Second, we delete observations of firms with negative or zero values of book value of capital (item 8), sales (item 12), or assets (item 6). To avoid rounding errors, we also delete observations with book value of capital less than one million dollars or assets less than two million dollars. Third, we delete observations of firms with missing data for assets (item 6), book value of capital (item 8), sales (item 12), operating income before depreciation (item 13), investment (item 30), dividends (item 21 plus item 19), equity issuance (item 108), and equity repurchases (item 115). Because a large share of equity issuance is done by small firms which may not be present in all the years that we cover, we prefer not to balance the panel. We end up with 11,945 firms and a total of 77,906 firm-year observations.

When computing the statistics in Table 2, we measure earnings using item 13. To reduce the impact of extreme observations, we also “winsorize” two variables (investment over capital and earnings over capital), using the 5th and 95th percentiles as thresholds. To compute total equity issuance over total investment for Table 2, we use the gross equity issuance, i.e. the aggregate of item 108, over the aggregate of item 30.

C Calibration of the Production Function and Shock Process

We follow an approach similar to that in Fuentes, Gilchrist and Rysman (2006), Gilchrist and Sim (2006), and Moyen (2004), and estimate the production function parameters and shock processes directly using the COMPUSTAT database. We choose these estimates as our calibrated parameter values. Because our paper does not focus on structural estimation, we do not use the simulated method of moments or indirect inference to estimate these parameters as in Cooper and Ejarque (2003), Cooper and Haltiwanger (2005), or Hennessy and Whited (2005, 2006).
We now describe our estimation procedure. By (47), we have the following expression for profits:
\[\pi(k, z) = k^{1-\alpha_l} z^{1-\alpha_l} \times \text{constant}. \]

Our regression is based on this equation. To recover the exponents on the production function, we run a simple regression of log real profits (item 13 deflated by the consumption GDP deflator) on log real capital (item 8 deflated by the investment GDP deflator):
\[\ln \pi_{it} = a + b \ln k_{it} + e_{it}. \] (C.1)

Note that we do not incorporate fixed effects in this regression. One reason is that our model has no fixed effect. Another one is that in a relatively short sample, the fixed effect is likely to absorb some of the dynamics, biasing the estimate of the shock process. Finally we find intrinsic permanent differences in firms’ productivity hard to square with the evidence on the turnover of the largest firms (see, for instance, Figure 4 in Comin and Philippon (2005)). We recognize, however, that fixed effects may increase the endogeneity problem in this production function estimation.21

Our estimate of \(b \) is \(\hat{b} = 0.855 \). Following the macroeconomics literature, we set \(\alpha_l = 0.65 \) since labor share is approximately 65 percent in the U.S. data. Given that \(\hat{b} \) is an estimate of \(\alpha_k / (1 - \alpha_l) \), this yields an estimate of \(\alpha_k : \hat{\alpha}_k = 0.30 \).

We use the residuals from the regression (C.1) to measure the shock process. We fit an AR(1) to \(\eta_{it} = (1 - \alpha_l) e_{it} : \)
\[\eta_{i,t} = \rho \eta_{i,t-1} + \sigma \zeta_{i,t}, \]
where \(\zeta_{i,t} \) is i.i.d. across \(i \) and \(t \) and drawn from a standard normal distribution. These estimates imply that the parameters of the shock process \(z \) are
\[\hat{\rho} = 0.76, \hat{\sigma} = 0.23. \]

Overall, our estimates for parameters of the production function and the shock process are quite similar to those in the papers cited above.

21One may want to include year effects in this regression to capture the business cycle variation in the data. Including them has a very small effect on our estimates.
References

Congressional Budget Office, 2003, How CBO analyzed the macroeconomic effects of the president’s budget.

Fuentes, Olga, Simon Gilchrist, and Marc Rysman, 2006, Discrete adjustment costs and investment dynamics: a maximum likelihood approach, working paper, Boston University.

Gilchrist, Simon, and Jae. Sim, 2006, Foreign denominated debt and investment behavior during the Korean financial crisis, working paper, Boston University.

Gordon, Roger and Martin Dietz, 2006, Dividends and taxes, NBER working paper 12292.

Gourio, François and Jianjun Miao, 2006, Transitional dynamics of dividend tax reform, work in progress, Boston University.

38
Jermann, Urban and Vincenzo Quadrini, 2003, Stock market boom and productivity gains of the 1990s, forthcoming in *Journal of Monetary Economics*.

Figure 1: Determination of optimal investment policy for the case without adjustment cost
Figure 2: **Finance regimes.** This figure illustrates the three finance regimes. Region I represents the equity issuance regime. Region II represents the liquidity constrained regime and region III represents the dividend distribution regime.
Figure 3: Labor market equilibrium in the model with exogenous leisure
Figure 4: Labor market equilibrium in the model with endogenous leisure