Investment Spikes: New Facts and a General Equilibrium Exploration

François Gourio† and Anil K Kashyap‡‡

January 2007

Abstract: Using plant-level data from Chile and the U.S. we show that investment spikes are highly pro-cyclical, so much so that changes in the number of establishments undergoing investment spikes (the “extensive margin”) account for the bulk of variation in aggregate investment. The number of establishments undergoing investment spikes also has independent predictive power for aggregate investment, even controlling for past investment and sales. We re-calibrate the Thomas (2002) model (that includes fixed costs of investing) so that it assigns a prominent role to extensive adjustment. The recalibrated model has very different properties than the standard RBC model for some shocks.

Key words: adjustment costs, investment, investment tax credit, fixed costs, extensive margin.

JEL Classification Number: E22, E32

† Department of Economics, Boston University, ‡‡ Graduate School of Business University of Chicago, Federal Reserve Bank of Chicago, and National Bureau of Economic Research. Kashyap thanks the Center for Research in Securities Prices, Initiative on Global Financial Markets and the Stigler Center all at the University of Chicago Graduate School of Business for research support. We thank Shawn D. Klimek from the US Census, and Olga Fuentes and Simon Gilchrist from Boston University for very kind help in providing data. We thank participants in the SNB conference and in seminars at the Universities of Chicago, Texas (Austin), Kellogg Graduate School of Management, the AEA meetings, the BU macro lunch, and in the GSB Macro and Finance lunches for helpful suggestions; Ricardo Caballero and Janice Eberly for helpful conversations; Jeffrey Campbell, Russell Cooper and Edward Prescott for discussing our paper; and Robert King for many constructive comments. We also thank Doriana Ruffino, Sandra Shao, and Jin Xu for excellent research assistance. The data, a technical appendix and Matlab programs to run the model are posted on the following web page: http://people.bu.edu/fgourio/extintpaper.html. All errors here are our own.
1. Introduction

Economists are sharply divided over the aggregate significance of the heterogeneity of plant-level investment. On the one hand, there is unanimous agreement that individual plants sometimes forgo investing at all and at other times have dramatic surges in investment.\(^1\) Caballero (1999), in his survey for the Handbook of Macroeconomics, argues that accounting for this “lumpiness” is critical: “it turns out the changes in the degree of coordination of lumpy actions play an important role in shaping the dynamic behavior of aggregate investment.” On the other hand, Thomas (2002) presents a model where this is not true. She writes “in contrast to previous partial equilibrium analyses, [my] model results reveal that the aggregate effects of lumpy investment are negligible. In general equilibrium, households’ preference for relatively smooth consumption profiles offsets changes in aggregate investment demand implied by the introduction of lumpy plant-level investment.” This “irrelevance result” inspired Prescott (2003) to argue “partial equilibrium reasoning to an inherently general equilibrium question cannot be trusted.”

In this paper, we make three contributions to this debate. First, we introduce several new facts about surges in investment (that we call spikes). In particular, we show that for both U.S. and Chilean plants, most of the variation in the total investment rate is due to variation in investment of firms undergoing spikes. Moreover, this approximation derives its explanatory power from changes in the number of firms making large investments (the “extensive margin”), and not changes in the average size of the spikes (the “intensive margin”). We also find that information on prevalence of spikes in one year has predictive power for forecasting aggregate investment in the next year (even controlling for the past level of investment or sales): years with relatively more spikes are followed by less investment in the subsequent years.

We then try to construct a model that not only generates spikes on average, but also variation in spikes over the business cycle. To do this we start with the Thomas (2002) model. This model (to our knowledge) is the only tractable dynamic stochastic general equilibrium (DSGE) model which naturally yields lumpy investment. The heterogeneity in this model derives from variation in the fixed costs that firms must pay in order to invest. We find that the exact model, as originally calibrated, has trouble fitting the facts about cyclical patterns in lumpiness. But by changing the calibration we can match better these facts.

While we make several changes, the critical one is to alter the distribution of fixed costs that firms face. In order for the extensive margin to matter, this distribution must have the property that many firms face roughly the same sized fixed cost in deciding whether to invest. When the distribution has this type of compression, it becomes possible for a shock to move many firms across the threshold from not investing to investing. Conversely, if the distribution exhibits little compression, then firms become much less likely to synchronize their decisions and the extensive margin matters less.

The third contribution is to explore the aggregate response of investment to various shocks when extensive adjustment is important. Thomas found that in her version of the model, the fixed costs that she introduced to generate spikes were essentially “irrelevant” for aggregate dynamics. In particular, she found the aggregate dynamics (summarized for example by the impulse response of investment to a productivity shock) to be the same as the standard real business cycle (RBC) model, which has no adjustment costs of any kind. In our calibration, the qualitative response of investment to a productivity shock is somewhat different from the standard RBC model. More importantly, we find that the original Thomas model and the RBC model also exhibit virtually identical response when the distribution of firms’ capital levels move away from the steady-state distribution (for instance, as might occur if a temporary tax change leads firms to accelerate investment spending). In contrast, under our calibration, aggregate investment is substantially more depressed than it would be in the RBC model. Hence for this kind of shock the fixed cost seems to matter a lot.

We conclude, therefore, that although general equilibrium attenuates the differences between the fixed cost model and the RBC model, it does not eliminate these differences. In other words, the irrelevance result is not a generic finding that comes from the general equilibrium, but rather a result that depends on the details of how the model is calibrated, especially regarding the production side.

The remainder of the paper is organized into three sections. The first documents the aforementioned empirical regularities. All three of our new facts are present in both the U.S. and Chilean samples. Next we review the Thomas model and explain how (and why) our calibration differs from hers. We then explore the predictions of the recalibrated model regarding the sensitivity to various disturbances. We close with a brief summary and a couple of suggestions about directions for future research.

2. Empirical Evidence on Lumpiness over the Business Cycle

To analyze lumpiness we study two establishment-level data sets covering manufacturing plants in Chile and the U.S. The data construction is discussed more completely in Gourio and Kashyap (2007). One important point from that discussion is the method that we use for aggregating the observations. In all of the results reported here, aggregates are constructed by weighting plants by their capital. While there are several good theoretical reasons that motivate this choice, as a practical matter we believe it is essential to make sure that the statistics we analyze are not driven by the behavior of small firms.

We also refer interested readers to Gourio and Kashyap (2007) for more details on the basic properties of the data (in particular, see their Table 1 and Figures 1, 2, and 3). As in all past studies of plant-level data, there are four prominent features of our two samples.

2 Importantly, we do not have access to the underlying micro data, but instead have tabulations that group plants according to their current investment rates.
First, in both samples many plants report literally no investment or only tiny investment (e.g. investment of less than two percent of capital) in a given year. We combine these establishments and refer to them as having “near zero” investment. On a capital weighted basis, the near zeros account for over 35% of the plant-years in the Chilean sample and over 15% percent in the U.S. sample.

Second, there are also many spikes. To facilitate comparisons with most papers in this literature including Cooper, Haltiwanger and Power (1999), Cooper and Haltiwanger (2005), and Becker et al (2006), we define spikes to be cases where investment relative to the beginning of period capital is greater than 20 percent. Using this threshold, 15% and 20%, respectively of the (capital-weighted) plant-years in the Chilean and U.S. samples represent spikes. Importantly, the new facts shown below regarding the importance of the extensive margin also hold when spikes are defined as investment exceeds 35 percent of capital.

The third and fourth patterns relate to the cyclicality of the near-zeros and spikes. To analyze the cyclical behavior of these series, we remove a linear trend from each series. The de-trended aggregate investment rate is highly positively correlated with the spikes and negatively correlated with the near-zeros. For instance, the correlation between the capital-weighted spikes and the aggregate investment rate (both linearly detrended) is 0.87 for the U.S. sample and 0.96 for the Chilean sample; and the correlation between the capital-weighted near zeros and the aggregate investment rate (both linearly detrended) is -0.94 for the U.S. sample and -0.56 for the Chilean sample.

In the remainder of this section we document several new facts regarding the connection between aggregate investment and investment spikes. The aggregate investment rate is calculated by taking the capital weighted average of the establishment level rates and we denote this as Itot/K. (The weighting scheme also means that Itot/K is the ratio of aggregate investment to aggregate capital in our sample.) In Figure 1, we decompose the aggregate investment rate into two parts. One part (shown by the lines with the circles) is the total investment done by those establishments where there is a spike (i.e. I/K > 20 percent), divided by the total stock of capital for all the firms in the sample; we label this series I20/K. The remainder of investment, that we dub I(0-20)/K, represents investment of plants with investment rates between 0 and 20 percent over total capital, and is shown in the line with inverted triangles.

The relative levels of I20/K and Itot/K indicate that the spikes account for about half of total investment in each country; in other words, I20/Itot is about 0.5. More importantly, the investment rate constructed for the spiking firms tracks the movements in the aggregate investment rate closely; the correlations between the de-trended series is 0.99 for each sample. Clearly, the bulk of the variation in the aggregate Itot/K is accounted for

3 For Chile the sample period corresponds to a remarkable macroeconomic boom (see Hsieh and Parker (2006) and Fuentes, Gilchrist and Rysman (2006)) so perhaps the upward trend is not so surprising. For the U.S. there is a modest downward trend. These low frequency movements are outside of the scope of our investigation so we remove the trends. It makes no difference whether we use a linear time trend or Hodrick-Prescott filter to detrend the series.
by changes in I20/K. The share of variance of Itot/K accounted to by I20/K (as opposed to the residual I(0-20)/K)) is 97 percent for the U.S. sample and 86 percent for the Chile sample. The converse of these observations is that there is little variation in total investment explained by the firms investing between zero and 20 percent. Thus, for the purposes of modeling investment fluctuations it is critical to understand the timing of the investment spikes.

To go further and understand how spikes matter for business cycles, we start from the following identity:

\[
\frac{I_{20}}{K} \equiv \frac{I_{20}}{K_{20}} \cdot \frac{K_{20}}{K} \equiv IPA_{20} \cdot ADJ_{20}
\]

\(\rightarrow Log\left(\frac{I_{20}}{K}\right) \equiv \log(IPA_{20}) + \log(ADJ_{20})\)

where I20 = \(\sum_{j=0}^{20} I_{i,t} / K_{i,j}\), K20 = \(\sum_{j=0}^{20} K_{i,j} / K_{i,j-1}\), K = \(\sum_{j=0}^{20} K_{i,j-1}\)

In words, equation (1) simply says that the total investment done by the plants experiencing spikes can vary either because of a change in the investment per adjuster (IPA20, the intensive margin) or because of a change in the (capital-weighted) number of firms adjusting (ADJ20, the extensive margin). This approach is analogous to the one proposed by Klenow and Kryvstov (2005) for studying price dynamics, where they decompose inflation into changes in the number of firms resetting their prices and changes in the average size of price changes for those firms resetting their price.

Figure 2 shows a graph of Log(I20/K), along with Log(IPA20) and Log(ADJ20) (after each series has had a linear time trend removed) for the U.S. and Chilean samples. The striking conclusion is that the extensive margin, ADJ20, drives variation in spikes.

One way to conveniently summarize the information in the picture is to compute the following pair of statistics:

\[
\text{Share}_{ADJ20} = \frac{\text{covariance}(\log(ADJ_{20}), \log(I_{20} / K))}{\text{variance}(\log(I_{20} / K))}
\]
\[
\text{and Share}_{IPA20} = \frac{\text{covariance}(\log(IPA_{20}), \log(I_{20} / K))}{\text{variance}(\log(I_{20} / K))}
\]

4 This is measured as Cov (I20/K,I/K) / Var (I/K).

5 This fact is also present, to a lesser degree, in Figure 8 of Cooper, Haltiwanger and Power (2000). The difference may be due to the fact that they use a balanced panel of rather large establishments. These authors also mention that spikes are procyclical but do not focus on this feature of the data.
These shares (by construction) must sum to one. If the proportion of firms with spikes ADJ20 is constant, they would be zero and one, and if the average investment rate of firms with spikes is constant, they would be one and zero. For the U.S. sample ShareADJ20 is 0.87, while for the Chilean sample it is 0.925. The dominant role of the extensive margin also appears when the threshold for identifying spikes is 35 percent (instead of 20). This fact also holds for different de-trending methods (e.g. the Hodrick-Prescott filter, or just considering growth rates).

Our last new fact about spikes is that they contain additional predictive content beyond just information that they convey about the past level of investment. The spirit of many models of lumpiness (e.g. Caballero and Engel (1999)) is that the cross-sectional distribution of firms’ capital stock relative to the level that would prevail absent any adjustment costs should be an important determinant of aggregate investment. It is empirically difficult to construct this cross-sectional distribution, but there is a simple way to test for this possibility. We estimate regressions of the form:

\[
\frac{I_{t,\text{tot}}}{K_{t-1}} = \alpha + \beta \text{Trend}_t + \gamma \frac{I_{t-1,\text{tot}}}{K_{t-2}} + \phi \frac{Sales_{t-1}}{K_{t-2}} + \sum_{h=1}^{H} \omega_h \text{ShareADJ20}_{t-h} \quad \text{(2)}
\]

The novelty is that we add the share of adjusters to an otherwise standard accelerator type investment equation.\(^6\) This type of accelerator style equation has repeatedly been shown to be an effective forecasting equation in horse-races of different specifications (Bernanke, Bohn and Reiss (1988) and Oliner, Rudebusch and Sichel (1995)).

Table 1 shows estimates of equation (2). The first six rows show the estimates for the U.S. data, while the last six rows show the estimates for the Chilean sample. For the U.S. data the lagged dependent variable is always estimated to have a positive and highly significant coefficient. The sales proxy is positively related to investment, but not always significant. Conversely in the Chilean sample the sales variable is always estimated to have a positive and very significant effect on investment, but the lagged dependent variable does not systematically influence investment.

Our main coefficients of interest are the \(\omega\)’s that measure the effects of past spikes on current investment. For the U.S. sample, the coefficients on both the first and second lags of ShareADJ20 are significant, whereas in the Chilean data, only the second lag is consistently significant.\(^7\) Importantly, the estimated signs of the \(\omega\)’s are all negative, suggesting that investment is depressed in the period after an investment surge. This correlation is to be expected based on fixed costs models (and would be of the opposite sign if the past ShareADJ20 variable was standing in for productivity shocks or other factors that raise investment demand).

\(^6\) For the U.S. sample, we have shipments data which correspond to sales for establishment data.

\(^7\) When the spikes are measured with the 35 percent threshold then both lags one and two are significant in both samples.
Taken literally, the coefficients suggest that the echoes from the spikes have a quantitatively important effect on investment. For the U.S. sample (Chile) the standard deviation of the spike variable is 0.046 (0.093), compared to the standard deviation of the investment rate of 0.017 (0.054). Taking the specifications where $h=1$, (shown in rows 5 and 11), the estimates for the U.S. (Chile) sample imply that a one standard deviation increase in ShareADJ20 predicts an increase of the investment rate of 0.7 (0.57) of a standard deviation.

Collectively, these new facts provide guidance about how to model lumpiness. Aggregate investment is largely driven by investment spikes; so a successful model should have the property that I_{20}/I_{tot} is substantial and that variations of I/K are accounted for by variation in I_{20}/K. Moreover, the spikes matter because of adjustment along the extensive margin, i.e. a change in the number of firms making large investments; these spikes are sufficiently important that they have independent predictive power for aggregate investment, even controlling for past investment and sales. We propose to quantify this by looking at the model’s predictions for ShareADJ20 and seeing if it is large. We now attempt to construct a model that has these properties.

3. A DSGE model with fixed costs of adjusting capital

We first review the Thomas model and then discuss how we calibrate it.

3.1 A brief review of the Thomas model

Thomas (2002) offers an elegant and compact model for analyzing the importance of fixed costs of adjusting capital on aggregate investment in a dynamic, stochastic general equilibrium model.8

The economy has a fixed number of plants (normalized to be of measure one). In what follows, we refer to these as “plants” or “firms” interchangeably. Each plant has the production function: $y = A k^n \psi$, where y is output, A is aggregate productivity (TFP), k is capital, and n is labor. There are decreasing returns to scale so that $\psi + \nu < 1$ and there is no entry or exit.

In each period, each plant has the opportunity to adjust its factor usage. Labor can be freely varied, but adjusting capital can only be done if the firm pays a fixed cost. The fixed cost, ξ, is a random variable that is independently and identically distributed across time and plants and comes from the cumulative distribution G. This distribution has finite support and the maximum fixed cost is called B. The firms that choose to pay the fixed cost, which we call “adjusters”, bear no marginal adjustment costs: they can buy or sell capital at price 1. The fixed cost is measured in units of labor. Owing to the fixed cost, firms will not always adjust capital.

8 The setup is similar to the sticky price model of Dotsey, King and Wolman (1999).
Much of the model’s tractability derives from its inherent symmetry that leads all firms choosing to invest at a given point to pick the same new level of capital, \(k_{0,t+1} \); this is because there is no heterogeneity except in the fixed cost drawn today and the current capital. So firms are distinguished by the time since their last investment. Regardless of whether a firm invests, its capital depreciates at rate \(\delta \). Therefore,

\[
k_{0,t+1} = (1 - \delta)k_{j,t} + i_{j,t} \quad \text{and} \quad k_{j+1,t+1} = (1 - \delta)k_{j,t},
\]

where \(k_{j,t} \) is the capital of a plant of vintage \(j \) at time \(t \), and \(i_{j,t} \) is the investment of a plant of vintage \(j \) at time \(t \) if it decides to invest.

A firm that last adjusted capital \(j \) periods ago, henceforth a vintage \(j \) firm, will operate with capital \(k_j \) (and labor \(n_j \)). This implies the following maximization problem for a plant:

\[
\max_{i_{j,t}, n_{j,t}} \mathbb{E}_0 \left(\sum_{j \geq 0} m_t (A_t k_{j,t} n_{j,t} - w_t n_{j,t} - i_{j,t} - \xi_t w_t 1_{i_{j,t} > 0}) \right),
\]

subject to the capital accumulation laws above, where \(m_t \) is the stochastic discount factor (the ratio of marginal utilities in period \(t \) to period \(0 \)), and \(w_t \) is the real wage.

The TFP process, \(A_t \), evolves according a first-order autoregressive process around a deterministic trend:

\[
A_t = \Theta' \delta z_t, \quad \log z_t = \rho \log z_{t-1} + \epsilon_t, \quad \epsilon_t \text{ is distributed independently } N(0, \sigma^2).
\]

The combination of the fixed depreciation rate and the finite upper bound on the fixed cost guarantees that all firms will eventually find it optimal to invest; in other words, this structure delivers a maximum vintage \(J \) by which time all firms will invest. The solution to the problem involves finding that maximum vintage \((J) \), along with the capital stock for each of the intervening vintages \((k_j) \), and the percentage of total firms in each vintage \((\theta_j) \).

Thomas shows that firm’s investment decisions follow a cutoff rule: in any given vintage, and in any period, there is a threshold fixed cost, such that firms which draw a fixed cost below the threshold will invest and upgrade their capital, and firms which draw a fixed cost above the threshold will let the capital depreciate. We call \(\omega_j \) the proportion of firms which are below the threshold (and so choose to adjust). In her simulations Thomas chooses a uniform distribution for the fixed costs, between 0 and \(B \). The level of fixed costs \(B \) is chosen to match two facts reported by Doms and Dunne (1998): i) in the average year, 8 percent of plants raise their real capital stocks by 30 percent or more; ii) these plants account for 25 percent of aggregate investment.

The rest of the model is intentionally chosen to follow the real business cycle (RBC) literature. So, for instance, Thomas adopts a utility function with indivisible labor of the
form $U_i = \log c_i - \zeta n_i$. Thus, aside from the fixed costs and the mild decreasing returns, the calibrated parameters she uses are very standard.\(^9\) (These parameter values are displayed in first column of Table 2.) Indeed, when the upper bound of fixed costs, B, is set to 0, all firms adjust their capital each period, and equate their marginal product of capital and labor; in this case, there is a representative firm, and the model collapses to a standard RBC model with decreasing return to scale.

This model is solved numerically by a standard log-linearization around the steady-state. First, one finds the optimal J, the maximum time-since-last-adjustment such that all firms want to invest. Second, one solves the system of non-linear equations that define the non-stochastic steady-state. Finally, one computes the log-linear approximation itself. The log-linear method is advantageous here since the state space of the model is large: it includes the TFP shock, and the cross-sectional distribution of capital (the θ_j’s and the k_j’s).\(^{10}\)

3.2 Calibration of the Model

In the first three rows of Table 3 we report several statistics comparing the prominence of spikes in both of our samples and in the baseline model. Given that Thomas chose B to match the Doms-Dunne facts on spikes, it is not surprising that the model also matches the prevalence of spikes in our sample. In her original calibration of the model, however, spikes only account for about 60 percent of the total variance of investment and the extensive margin accounts for only 30 percent of the variance of spikes; in the data both these percentages are roughly 90 percent.

In Gourio and Kashyap (2007) we describe a number of comparative static exercises that help provide intuition for why the extensive margin is not very important in the Thomas calibration. We focus on three key parameters in these experiments: the maximum size of fixed costs, B, the distribution of fixed costs, G, and the curvature of the production function ($\psi + \upsilon$). Intuitively one expects these parameters to be critical since B and G govern the costs of adjusting capital and the curvature governs the benefits (by determining the loss in profits that result from having an inefficient plant size).

These experiments suggest that the key determinant of the extensive-intensive decomposition is the shape of the CDF. The intuition for this conclusion is that increasing the number of plants doing positive investment requires marginal plants to switch from inaction to action; this decision depends on the fixed costs for the indifferent plants. If marginally inactive plants face the same fixed cost as marginally active plants, increasing the number of plants investing is inexpensive. Hence, the marginal cost of changing the extensive margin depends on the shape of the CDF of fixed costs.

\(^9\) Also, the model is calibrated to annual rather than quarterly data, because the plant-level evidence is based on annual surveys.

\(^{10}\) For more details on the solution, we refer the reader to our separate technical appendix (available on http://people.bu.edu/fgourio).
Thomas, following Caballero and Engel (1999), chose G to be uniform. With this type of CDF (or any other that is very smooth), increasing the number of plants investing requires activating plants that have substantial differences in the fixed costs they are facing. Put differently, at the margin there is a lot of heterogeneity in terms of fixed cost. In this case it will be efficient to rely more on intensive adjustment. On the other hand, when the CDF is sufficiently “compressed”, i.e. so that many firms face nearly-identical fixed costs, the opposite result obtains: increasing the number of plants investing need not be very costly. This means that the extensive margin can be important.

In the experiments that follow, the compressed CDF that is considered is shown in the lower half of Figure 3. This particular CDF implies that the fixed costs for most firms bunch around B and B/2, but all of our results would also obtain if there was bunching only around one level of fixed cost.\(^{11}\) Indeed in the first draft of this paper, we considered simpler examples where there is almost no heterogeneity in fixed costs: all firms draw B, in which case the model is closer to the first generation of SS models\(^ {12}\) rather than the ones studied by Caballero and Engel (1999) and Thomas (2002). However, what matters for us is the “compression” and not the lack of heterogeneity, and to make that clear we present results for this CDF. Based on the cases we considered we conjecture that the same results would obtain if there were multiple points of compression; it appears that having bunching is a necessary condition for extensive adjustment to be dominant in this type of model – but the exact nature of the compression is not critical.

Before turning to the results, we note one other observation regarding the original Thomas calibration. As reported in the fourth column of Table 3, total expenditure due to adjustment costs is roughly 1/5 of one percent of total investment spending. This cost seems small on an anecdotal basis, if we think of the costs of the planning, budgeting, and committee work that accompany most investments. There are obvious cases when adjustment costs are much larger: think of the disorganization of a factory floor, or the temporary closure of a retail store.

One recent study that computes adjustment costs is by Cooper and Haltiwanger (2006). They study a host of specifications that include convex and non-convex adjustment costs, including fixed costs, quadratic costs, gaps between the buying and selling price of capital, and productivity distortions created by capital adjustment. Using U.S. plant level data, they find statistically significant costs of each type, either when estimated in isolation or when several costs are simultaneously present. The total implied adjustment costs in this model and all the others (e.g. the one including just fixed costs) are substantial. For instance, their preferred estimates suggest that profits are reduced 20 percent during investment spikes. They simulate the model and find that on average

11 The formula for this CDF is \(G(x) = H(x/B)\) where B is the upper support and H is defined on the interval [0,1] as \(H(x) = (F(x)-F(0))/(F(1)-F(0))\), with \(F(x) = 1/(2\pi)*(\arctan(\text{sigma}_1*(x-1/2)) + \arctan(\text{sigma}_2^2*(x-1)))\). This distribution implies that many firms draw either a cost around B/2 or a cost close to B. The parameters \text{sigma}_1 and \text{sigma}_2 govern how concentrated around B/2 and B the fixed costs are. For all the experiments in Table 3 we set \text{sigma}_1 = 150 and \text{sigma}_2 = 33.33.

spending on adjustment costs is equal to 0.91 percent of capital. Given that investment for their sample is about 12.2 percent of capital, this implies that adjustment costs average roughly 7.5 percent of investment; in other words, they find adjustment costs roughly 40 times the size assumed by Thomas. Abel and Eberly (2002) in their study of listed firms find a similar magnitude of adjustment costs (between 1.1 and 9.7 percent of investment). So in what follows we also explore the predicted variation in total adjustment costs paid relative to investment. From a theoretical standpoint, it is hardly surprising that lumpiness is quantitatively irrelevant when fixed costs are small. This is another motivation to explore the effect of varying B, the parameter which governs the level of fixed costs.

Our first experiment is to substitute the compressed distribution of fixed costs as in the lower half of Figure 3 for the uniform distribution. If we keep Thomas choice of $B=0.002$, then plants adjust continuously\(^\text{13}\); hence to obtain some lumpiness, we set $B=0.008$. The results are shown in row 4 of Table 3. With these changes the extensive margin in the model rises to 95 percent and the variance of I_{tot}/K due to I_{20}/K rises to 99.9 percent. Thus, the model becomes much closer to the data on these two critical dimensions. The only shortcoming is that expenditure on adjustment costs remains less than one percent of total investment spending.

To see that the improvement in fit comes solely from the compression, the next row in the table shows the findings when the uniform distribution is used and B is set to 0.0053. With this level of B the average adjustment costs faced by firms is the same as in row 4. With this specification $ShareADJ_{20}$ drops back towards the level in the baseline Thomas specification. The contrast between rows 4 and 5 quantifies the intuition given above about the importance of compression.

Our next step is to increase B to move the expenditure in adjustment costs to a more plausible level. Row 6 shows the result when B is equal to 0.03. This change increases the resources spent on adjustment so that they are nearly two percent of investment. Notice that the number of vintages also rises so that $J=24$. This occurs because as the costs become higher, firms tolerate larger deviations from their target capital before adjusting. Indeed, if we double B again, to $B=0.06$, then $J=45$ and the expenditure on adjustment costs rises to just over three percent of investment. In this case, roughly 96 percent of the plants do not invest.

To limit this waiting it is necessary to give firms higher benefits from adjusting their capital stock; to do so we change the curvature of the profit function (which in this model comes from the decreasing returns to scale but could also have been introduced by assuming monopolistic competition in the product market). The curvature determines the cost to having the capital stock deviate from its static optimal level. Subsequent to Thomas’ paper a large empirical literature has estimated this curvature to be between 0.5 and 0.7, markedly lower than one (see e.g., Cooper and Haltiwanger (2005), Fuentes, \footnote{This is because the chance of getting a very low fixed cost is low, so that in contrast to Thomas, there is no option value of waiting for a low fixed cost.}
Gilchrist and Rysman (2006), and Hennessy and Whited (2005)). Thus, there are both empirical and theoretical reasons to consider calibrations with more curvature.

Comparing rows 6 and 7 shows the effect of changing curvature. Here we set the return to scales to 0.6, and find that relative to row 6 this doubles the resources spent on adjustment costs, and reduces the maximum vintage J, so that firms adjust faster. The extensive margin remains dominant.

This suggests that a calibration that raises B and involves more curvature could lead to a model that has both non-trivial spending on adjustment and important extensive adjustment. Our preferred calibration confirms this hunch. For these results we increase B to 0.08 and we also increase the depreciation rate to 0.12 to increase further the gains from adjustment; the full set of parameters we choose are shown in the second column of Table 2 and the resulting moments are shown in the last row of Table 3. We now find that the extensive margin is critical and that spending on adjustment costs is substantial.

This calibration is not fully optimized, i.e. it is likely that we can match the moments more closely. But, we believe that further improvements would not change our main conclusions that compression in the distribution of fixed costs is key to matching the dominant role of the extensive margin, and a combination of high fixed costs and curvature leads to non-trivial spending on adjustment costs. One defect of our preferred specification is that nearly all the investment is spikes. This comes because we have no maintenance motives for investing. In Gourio and Kashyap (2007) we show that adding maintenance makes little difference.

While these findings are robust to certain changes we do not want to overstate their generality. For instance, one obvious extension would be to allow for persistent productivity shocks. Khan and Thomas (2006) extend the Thomas (2002) and Khan and Thomas (2003) models to allow for idiosyncratic productivity shocks. They do not find any significant effect of fixed costs on aggregate dynamics. Their baseline calibration has relatively low adjustment costs and only modest curvature. Moreover, they maintain the assumption of a uniform distribution of fixed costs. Given this, and that the productivity shocks are log-normally distributed, the marginally inactive firms will not be similar to the marginally active ones. They also concentrate on the response of investment to TFP shocks and not other shocks, and on whether the model generates nonlinearities. We concentrate on the simpler question of whether aggregate dynamics are different in the fixed cost model and in the RBC model. Interestingly, Khan and Thomas emphasize that general equilibrium feedbacks affects plant-level investment dynamics, which would imply that the panel data estimates from partial equilibrium models that we use may be misleading.

This is not surprising. Consider an exogenous breakdown process which requires firms to have small investment rates; this will create some small investment rates in every period, but since this “maintenance investment” will not change over the business cycle it will have almost no effect on aggregate dynamics. Indeed, if there are types of investment for which the fixed cost does not apply or is different, calibrating the model to match the cross-sectional distribution of investment rates is not informative about the business cycle behavior. These considerations are why we concentrate on matching the (capital-weighted) business cycle statistics of the cross-section (rather than the average properties).
Bachman, Caballero and Engel (2006) also explore issues that we do not consider. Like us, their model presumes higher curvature, and higher fixed costs to reproduce “sectoral level” volatility. They then calibrate the intertemporal elasticity of substitution of consumption to match aggregate volatility. With these features, they obtain like us differences between the impulse responses of their model and the Thomas model. They emphasize that their specification also implies that the elasticity of aggregate investment with respect to a TFP shock is time-varying. (This feature is absent from our model because it is log-linear.) There are two main differences between our paper and their study. First, we keep the same preferences as Thomas (2002), i.e. log utility of consumption and linear disutility of leisure (as in Hansen (1985) and Rogerson (1988)). Since the dispute is about whether general equilibrium offsets are central to this debate, we believe this is the appropriate place to start. Second, we focus on the shape of the distribution of fixed costs while they emphasize the role of sectors.15

4. Aggregate Dynamics and the Irrelevance Result

We conclude our analysis by revisiting the Thomas (2002) “irrelevance result” using our new calibration of the fixed cost model.

4.1. The Thomas result

Thomas compared the effect that aggregate productivity shocks have on investment when the fixed cost is positive and when the fixed cost is zero. In the latter case, the model simplifies to the standard RBC model (with decreasing returns to scale) without any adjustment cost. The top panel of Figure 4 plots the impulse response of the two models to the productivity shock.16 The striking result is that the two models are virtually indistinguishable, with the two lines sitting on top of each other. The response on impact of the fixed cost model is about 99.8 percent of the response of the RBC model.

Thomas was careful to check that this result holds for many variations of parameter values. For instance, changing the elasticity of labor supply or the source of shocks does not affect the result. Increasing the level of fixed costs (B), while maintaining a uniform distribution, also makes little difference: for instance, when B is multiplied by a factor of 10, i.e. B = 0.02, so that the maximum vintage is J=20, the impact response of the fixed cost model is 98 percent of the response of the RBC model. That is, larger fixed costs lead to a slightly smaller response of investment, but the difference between the two models remains negligible.

15 Another recent paper on the topic is Svenn and Weinke (2005). In contrast to Thomas (2002) or Caballero and Engel (1999), they use a Calvo-style time-dependent adjustment rule for capital. Interestingly, they find that given this rule, the irrelevance result holds in the RBC model but not in a New Keynesian model.

16 In a one-shock linear model, the impulse response function (IRF) summarizes the full dynamics of the system. Hence, models which have the same IRF have exactly the same dynamics in all respects.
This is in stark contrast with the partial equilibrium analysis, where fixed cost models typically generate two features in the impulse response: first, aggregate investment becomes of course smoother than without any adjustment costs; second, investment becomes subject to oscillatory dynamics (aka “echo effects”, or replacement cycle). Thomas argued that the general equilibrium nature of the model was responsible for the inconsequential impact of the micro lumpiness.

Thomas is to be praised for carrying out the first general equilibrium analysis of the fixed cost models, and for highlighting the quantitative importance of general equilibrium effects. But there is still a tension between the preference for smooth consumption of households and the lumpy investment demand of firms. There is no good reason why all the effects of fixed costs would disappear in general equilibrium. This has to be a quantitative question; depending on the curvature of the utility function and the parameters that govern the investment demand of firms, the race between consumption smoothing and investment lumpiness will go one way or the other. We show below that general equilibrium is not the whole story. Depending on microeconomic assumptions, features typical of the partial equilibrium responses with fixed costs may still arise in general equilibrium.

4.2 Impulse response to Technology Shock with our Calibration

We start by displaying in the bottom panel of Figure 4 the impulse response function of aggregate investment to a productivity shock for our preferred calibration from Section 3, along with the RBC model with the same parameters but zero fixed costs. The two models have noticeably different dynamics in two respects. First, the response is initially smaller in the fixed cost model: on impact the response of the fixed cost model is only 85 percent of the response of the RBC model. Second and more interestingly, the fixed cost model exhibits a substantial hump nine periods after the shock. We call this hump an “echo effect” because it is caused by the initial surge in investment: as many firms adjust initially, the distribution shifts toward more recent vintages, which are less likely to invest. This makes the investment response smaller than the RBC model for a while, until the units which invested at time 0 need to invest again to replace their capital. Clearly, this result depends on the shape on the hazard rate (the probability of adjusting as a function of vintage, i.e. alpha). For our calibration, the hazard rate is initially steeply convex: the alphas (probability of adjustment) are very small for the first vintages before rising noticeably after 8 periods. (Of course, adjustment is random, and probabilities of adjustment move over time, but the average shape of the hazard rate still plays the dominant role.) We see the responses of the RBC model and our calibration of the Thomas model as somewhat different, but we recognize that they are similar: general equilibrium effects are important.

4.3 Impulse response to an Investment Tax Credit with our Calibration

When we consider disturbances which affect more directly the shape of the cross-sectional distribution, the differences between the two models become much larger. To illustrate this, we consider the following thought experiment, which is very similar to the
effect of an investment tax credit: assume that many firms have invested in the past two years, so that the distribution is distorted with more firms in the first two vintages and fewer firms in all the other vintages. What are the aggregate effects of starting with this cross-sectional distribution? Figure 5 presents the initial cross-sectional distribution that this thought experiment considers. Figure 6 gives the aggregate investment response. The RBC model displays the usual, monotonic, smooth convergence to the steady-state given a high starting initial capital (since many firms have invested recently). The fixed cost model, for our calibration, differs in two respects: first, the initial response of investment is smaller than in the case of the RBC model. This is because many firms have invested recently, so that there is less investment demand as fewer firms are close to the point where they want to invest. Second, we obtain a magnified “echo effect” when firms which had invested recently finally re-invest after 8 to 10 periods. These are exactly features are typical of partial equilibrium fixed cost models. These features arise largely because of our choice of fixed cost distribution: this distribution G implies that the hazard rate is initially very low and then rises steeply; the initially lower response of aggregate investment stems directly from the first feature, and the echo stems from the second feature. Hence, there is an intimate connection between what we do to the model to match the importance of extensive adjustment, and its aggregate implications – the compression of the CDF is the key element in both cases.

Overall, we conclude that a shock which affects the shape of the cross-sectional distribution has very different effects when fixed costs are positive than when they are nil.17 Of course in general the cross-sectional distribution is endogenous to shocks, but there are several cases when we might expect it to shift abruptly: for instance, Bloom (2006) considers the effect of a rise in uncertainty which leads many firms to delay capital adjustment. Clearly, the effects that we obtain are also not the effects that one would obtain with the traditional quadratic adjustment cost model.

We emphasize that all of these results are obtained with log utility. As a point of reference the bottom panel of Figure 6 shows the same experiment in the baseline Thomas model. With her calibration the RBC model and the fixed cost model yield essentially identical predictions even for this particular experiment. This for us is proof that general equilibrium effects are not the only reason why Thomas found no aggregate effect of fixed costs. Depending on microeconomic assumptions, i.e. on the calibration, the equivalence result need not hold.

5. Conclusions

We make three contributions to the debate over the aggregate significance of plant-level investment lumpiness. Remarkably, the basic plant-level facts on the lumpiness of investment are fairly similar in Chile and the U.S. In each country, we show that investment spikes drive total investment. The spikes draw their predictive power from changes in number of plants making large investments, rather than changes in the size of

17 To keep our experiment simple, we picked the initial cross-sectional distribution arbitrarily, but very similar results are obtained when one runs a true investment tax credit in the model.
average investment per plant. We use these statistics regarding the decomposition between the intensive and extensive margins of adjustment to summarize the microeconomic facts about lumpiness that we ask a model to match.

We use the Thomas (2002) model to examine these facts. This model augments a relatively standard RBC model by assuming that firms must pay a fixed cost (that is randomly drawn each period) in order to adjust its capital. As originally calibrated, however, the model fails to generate dominant role of investment spikes and a dominant role of the extensive margin. We argue (appealing to recent econometric work by others) that the original calibration has an average level of fixed costs which is too low and a profit function that has too little curvature. These changes alone do not fundamentally change the model’s properties, particularly regarding its ability to fit the intensive and extensive margins. We also consider a third change whereby the distribution of fixed costs from which firms sample is much more compressed than the distribution considered by Thomas. This change raises the prominence of extensive adjustment.

Our final contribution is to study the properties of the model using our preferred calibration. In the original Thomas model the aggregate dynamics for investment following a productivity shock were indistinguishable from an RBC model with no adjustment costs. In our model this type of shock plays out somewhat differently. Moreover, for shocks that directly reshape the cross-sectional distribution of capital, such as an investment tax credit, the two models have very different implications: the fixed cost model predicts that investment is more depressed for a while; moreover, the fixed cost model generates an echo effect which is absent in the RBC model.

Our conclusion from the last exercise is that there is nothing generically related to DSGE models that guarantees that plant-level investment lumpiness is smoothed away. Rather we agree with Thomas that there can be substantial differences between the importance of lumpiness in a GE models and partial equilibrium models. However, many have gone farther and concluded that GE makes fixed costs to investment completely irrelevant for the business cycle. Both our empirical and theoretical work show this conclusion is premature. Instead, we see the answer to this question as being sensitive to details of how the model is set up. Given the currently available information, we think our calibration is reasonable, but we recognize much more work needs to be done in this respect to determine how these models should be estimated and calibrated.
References

Table 1: Forecasting of Aggregate Investment by Share of Plants undergoing Investment Spikes.

Dependent variable is Itot_t/K_{t-1}, rows of the table show regressions with different right hand side variables that are defined in the text. A time trend is always included (but not shown) to save space. For the U.S. sample, the time period is 1974 to 1998. For the Chilean sample the time period is 1981 to 1999. The standard errors are computing using the Newey-West correction with three lags.

<table>
<thead>
<tr>
<th>Row</th>
<th>Sample</th>
<th>R^2</th>
<th>$\text{Itot}{t-1}/K{t-2}$</th>
<th>$\text{Sales}{t-1}/K{t-2}$</th>
<th>ShareADJ20$_{t-1}$</th>
<th>ShareADJ20$_{t-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U.S.</td>
<td>0.748</td>
<td>0.743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>U.S.</td>
<td>0.738</td>
<td>0.690</td>
<td>0.0078</td>
<td>-0.204</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>U.S.</td>
<td>0.776</td>
<td>1.255</td>
<td></td>
<td></td>
<td>-0.161</td>
</tr>
<tr>
<td>4</td>
<td>U.S.</td>
<td>0.893</td>
<td>1.553</td>
<td></td>
<td>-0.228</td>
<td>-0.161</td>
</tr>
<tr>
<td>5</td>
<td>U.S.</td>
<td>0.786</td>
<td>1.257</td>
<td>0.0199</td>
<td>-0.258</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U.S.</td>
<td>0.866</td>
<td>1.531</td>
<td>0.010</td>
<td>-0.250</td>
<td>-0.157</td>
</tr>
<tr>
<td>7</td>
<td>Chile</td>
<td>0.809</td>
<td>0.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chile</td>
<td>0.848</td>
<td>0.151</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chile</td>
<td>0.802</td>
<td>0.999</td>
<td></td>
<td>-0.331</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Chile</td>
<td>0.847</td>
<td>1.152</td>
<td></td>
<td>-0.454</td>
<td>-0.405</td>
</tr>
<tr>
<td>11</td>
<td>Chile</td>
<td>0.839</td>
<td>0.462</td>
<td></td>
<td>-0.156</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Chile</td>
<td>0.856</td>
<td>0.790</td>
<td></td>
<td>-0.323</td>
<td>-0.331</td>
</tr>
</tbody>
</table>
Table 2: Parameters in the Thomas (2002) Calibration and in our Preferred Calibration. The CDF for G is described in the text.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Thomas (2002)</th>
<th>Preferred Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciation rate (δ)</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Persistence of TFP shock (ρ)</td>
<td>0.9225</td>
<td>0.9225</td>
</tr>
<tr>
<td>Returns to scale ($\psi + \nu$)</td>
<td>0.905</td>
<td>0.60</td>
</tr>
<tr>
<td>Share of capital in Production Function ψ</td>
<td>0.325</td>
<td>0.2155</td>
</tr>
<tr>
<td>B (maximum fixed cost)</td>
<td>0.002</td>
<td>0.08</td>
</tr>
<tr>
<td>Discount factor (β)</td>
<td>0.954</td>
<td>0.954</td>
</tr>
</tbody>
</table>
Table 3: Steady-State and Business Cycle Lumpiness Statistics for various calibrations.

<table>
<thead>
<tr>
<th></th>
<th>Total Adjustment Costs / Total I</th>
<th>Mean % Plants 1/K>0.20</th>
<th>Mean I20/Itot</th>
<th>% Variance of Itot/K due to I20/K</th>
<th>Share ADJ20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data US</td>
<td>NA/NA</td>
<td>20.8</td>
<td>49.9</td>
<td>97.0</td>
<td>87.0</td>
</tr>
<tr>
<td>Data Chile</td>
<td>NA/NA</td>
<td>16.6</td>
<td>57.3</td>
<td>86.0</td>
<td>92.5</td>
</tr>
<tr>
<td>Thomas (2002) Calibration</td>
<td>5 0.21</td>
<td>19.7</td>
<td>85.9</td>
<td>62.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Thomas with Compressed CDF And B=0.008</td>
<td>11 0.87</td>
<td>12.2</td>
<td>99.9</td>
<td>99.9</td>
<td>94.6</td>
</tr>
<tr>
<td>Thomas with Uniform CDF and B=0.0053 (same mean as row 4)</td>
<td>9 0.34</td>
<td>17.1</td>
<td>93.9</td>
<td>81.9</td>
<td>43.3</td>
</tr>
<tr>
<td>Thomas with Compressed CDF and Higher B (0.03)</td>
<td>24 1.97</td>
<td>6.4</td>
<td>99.9</td>
<td>99.9</td>
<td>97.0</td>
</tr>
<tr>
<td>Thomas with Compressed CDF and Lower return to scales, and Higher B=0.03</td>
<td>8 1.74</td>
<td>15.3</td>
<td>99.9</td>
<td>99.5</td>
<td>22.6</td>
</tr>
<tr>
<td>Preferred Calibration = Thomas with Compressed CDF and Lower return to scales and higher B (and higher depreciation)</td>
<td>16 9.14</td>
<td>6.9</td>
<td>99.9</td>
<td>99.9</td>
<td>89.6</td>
</tr>
</tbody>
</table>

Note: See the text for the full characteristics of the alternative calibrations. The definitions of I20, Itot, ShareADJ2 and ShareADJ20 are:

\[I_{20} = \sum_{l_{ij}>0.02} I_{ij}, \quad I_{t,0} = \sum_{l_{ij}>0.02} I_{ij}, \quad I_{t} = \sum_{l_{ij}>0.02} I_{ij}, \]

\[K_{20} = \sum_{l_{ij}>0.02} K_{ij}, \quad K_{t,0} = \sum_{l_{ij}>0.02} K_{ij}, \quad K_{t} = \sum_{l_{ij}>0.02} K_{ij}, \]

\[
\text{ShareADJ2} = \frac{\text{covariance}(\log(\frac{K_{20}}{K}), \log(\frac{I_{20}}{K}))}{\text{variance}(\log(\frac{I_{20}}{K}))} \quad \text{and} \quad \text{ShareADJ20} = \frac{\text{covariance}(\log(\frac{K_{20}}{K}), \log(\frac{I_{20}}{K}))}{\text{variance}(\log(\frac{I_{20}}{K}))}
\]

\% Variance of Itot/K due to I20/K = \text{Cov}(I20/K, Itot/K)/\text{Var}(Itot/K).
Figure 1: Investment Spikes and Investment Non-Spikes Relative to Total Investment for U.S. and Chilean Manufacturing Plant.
Figure 2: Decomposition of Investment in Intensive and Extensive Adjustment for U.S. and Chilean Manufacturing Plant.

Note: Data are de-trended as described in the text.
Figure 3: Cumulative Distribution Function G of Fixed Costs used in the Thomas model (Top Panel) and in our calibration (Bottom Panel).
Figure 4: Impulse Response of Aggregate Investment to an Aggregate Productivity Shock for the Original Thomas Calibration of the DSGE Model with Fixed Costs (Top Panel) and for our Calibration (Bottom Panel).
Figure 5: Initial Cross-Sectional Distribution for the “ITC experiment” in the Thomas model (Top Panel) and in our Preferred Calibration. In both cases the first two vintages are up by 20% each and the other are reduced equally.
Figure 6: Dynamic Path for Aggregate Investment When the Initial Distribution of Capital is Distorted in the Thomas Calibration (Top Panel) and in Our Calibration of the DSGE Model with Fixed Costs (Bottom Panel).