Monetary Policy with Single Instrument Feedback Rules.*

Bernardino Adão
Banco de Portugal

Isabel Correia
Banco de Portugal, Universidade Catolica Portuguesa and CEPR

Pedro Teles
Banco de Portugal, Universidade Catolica Portuguesa, and CEPR

First draft: November, 2004, this version: November, 2006

Abstract

We revisit the issue of multiplicity of equilibria when monetary policy is conducted with either the interest rate or the money supply as the sole instrument of policy. We show that in standard monetary models there are interest rate feedback rules, and also money supply rules, that implement a unique global equilibrium. This is a contribution to a literature that either concentrates on conditions for local determinacy, or criticizes that

*We thank Andy Neumeyer for very useful discussions. We are also thankful to participants at the 2006 ESSIM of the CEPR, at the JLS series of the ECB, CFS, and Deutsche Bundesbank, at the FRB of Chicago and FRB of New York, Universitat Pompeu Fabra, European University Institute and the 2004 Meetings of the SED. We gratefully acknowledge financial support of FCT. The opinions are solely those of the authors and do not necessarily represent those of the Banco de Portugal.
approach showing that local determinacy might be associated with global indeterminacy. The interest rate rules we propose are price targeting rules that respond to the forecasts of future economic activity and the future price level.

Key words: Monetary policy; interest rate rules; unique equilibrium.

JEL classification: E31; E40; E52; E58; E62; E63.

1. Introduction

In this paper we revisit the issue of multiplicity of equilibria when monetary policy is conducted with either the interest rate or the money supply as the instrument of policy. There has been an extensive literature on this topic starting with Sargent and Wallace (1975), including a recent literature on local and global determinacy in models with nominal rigidities. Most of this literature finds conditions on policy under which there is a single equilibrium locally, in the neighborhood of a steady state. Some of this literature points out that the conditions for local uniqueness are not robust to changes in the environment. Another branch of the literature criticizes the local approach by pointing out that in general there are other equilibria, and arguing that the analysis should be global.

Our analysis is global. We show that it is possible to implement a unique equilibrium globally with an appropriately chosen interest rate feedback rule, and similarly with a money supply feedback rule of the same type.

The interest rate feedback rules that implement unique equilibria are price targeting rules where the nominal interest rate is a function of expectations of the future level of economic activity and the future price level. To the extent that the interest rate reacts to the forecast of an economic aggregate it resembles the rules that central banks appear to follow. In the response to the price level it is in the class of price level targeting rules, that are further apart from the policy debate.

We show the results in the simplest possible model, a cash-in-advance economy with flexible prices. The results are robust to alternative assumptions on the use
of money and, as we show in the paper, to the consideration of nominal rigidities. An important assumption, and one that is also standard in this literature, is that fiscal policy is endogenous, meaning that taxes can be adjusted residually to satisfy the budget constraint of the government.

The assumption of an infinite horizon is crucial. In finite horizon economies, the equilibrium is described by a finite dimensional system of equations where the unknowns are the quantities, prices and policy variables. The number of degrees of freedom in conducting policy can be counted exactly. In this context, single instrument rules are not sufficient restrictions on policy. They always generate multiple equilibria. This multiplicity does not depend on the way policy is conducted, whether interest rates are set as sequences of numbers, or as backward, current or forward functions of endogenous variables. This is no longer the case in the infinite horizon economy. As we show in this paper, there are single instrument feedback rules that implement unique equilibria.

As mentioned above, after Sargent and Wallace (1975), and McCallum (1981), there has been an extensive literature on multiplicity of equilibria when the government follows either an interest rate rule or a money supply rule. This includes the literature on local determinacy, with recent contributions such as Woodford (1994, 2003), Clarida, Gali and Gertler (1999, 2000), Carlstrom and Fuerst (2001, 2002), Benhabib, Schmitt-Grohe and Uribe (2001a), among many others. In this literature the analysis uses linear approximations of the models, in the neighborhood of a steady state, and identifies the conditions on preferences, technology, timing of markets, and policy rules, under which there is a unique local equilibrium. There is a unique local equilibrium, in the neighborhood of a steady state, when there is also a continuum of divergent solution paths originating close to that steady state. In the linear approximation of the model, the divergent solutions are explosive, and are disregarded using arbitrary technical restrictions. In the nonlinear model the alternative equilibria may converge to other steady

\footnote{Obstfeld and Rogoff (1983) use a convertibility argument to exclude explosive equilibrium paths in a nonlinear model.}
states, or exhibit all kinds of cyclical behavior. It is on the basis of these results that the literature on local determinacy has been criticized by the recent work on global stability showing that the conditions for local determinacy may in fact be conditions for global indeterminacy (see Benhabib, Schmitt-Grohe and Uribe (2001b), Schmitt-Grohe and Uribe (2001) and Christiano and Rostagno (2002)).

This paper was motivated by previous work on optimal monetary policy in an economy under sticky prices. In Adao, Correia and Teles (2003), it is shown that after choosing the sequence of nominal interest rates there is still a large set of implementable allocations, each supported by a particular sequence of money supplies. Implicitly it is assumed that policy can set exogenous sequences for both interest rates and money supplies, subject to certain restrictions. Alternatively, as we show in this paper, there are single instrument feedback rules that implement the optimal allocation. Finally, the paper is also related to Adao, Correia and Teles (2004) that show that it is possible to implement unique equilibria in environments with flexible prices and prices set in advance by pegging state contingent interest rates as well as the initial money supply.

The paper proceeds as follows: In Section 2, we describe the model, a simple cash-in-advance economy with flexible prices. In Section 3, we show that there are single instrument feedback rules that implement unique equilibria. We also discuss how a particular equilibrium can be implemented and compare the rules we propose to alternative rules in the literature, that can only guarantee locally determinate equilibria. In Section 4, we interpret the results by showing that the assumption of an infinite horizon is a necessary assumption for the results. In Section 5 we extend the results to the case where prices are set in advance. Section 6 contains concluding remarks.

2. A model with flexible prices

We first consider a simple cash-in-advance economy with flexible prices. The economy consists of a representative household, a representative firm behaving
competitively, and a government. The uncertainty in period \(t \geq 0 \) is described by the random variable \(s_t \in S_t \) and the history of its realizations up to period \(t \) (state or node at \(t \)), \((s_0, s_1, \ldots, s_t)\), is denoted by \(s^t \in S^t \). The initial realization \(s_0 \) is given. We assume that the history of shocks has a discrete distribution.

Production uses labor according to a linear technology. We impose a cash-in-advance constraint on the households’ transactions with the timing structure described in Lucas and Stokey (1983). Each period is divided into two subperiods, with the assets market operational in the first subperiod and the goods market in the second.

2.1. Competitive equilibria

Households The households have preferences over consumption \(C_t \), and leisure \(L_t \), described by the expected utility function:

\[
U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u (C_t, L_t) \right\}
\]

(2.1)

where \(\beta \) is a discount factor. The households start period \(t \) with nominal wealth \(W_t \). They decide to hold money, \(M_t \), and to buy \(B_t \) nominal bonds that pay \(R_t B_t \) one period later. \(R_t \) is the gross nominal interest rate at date \(t \). They also buy \(B_{t,t+1} \) units of state contingent nominal securities. Each security pays one unit of money at the beginning of period \(t+1 \) in a particular state. Let \(Q_{t,t+1} \) be the beginning of period \(t \) price of these securities normalized by the probability of the occurrence of the state. Therefore, households spend \(E_t Q_{t,t+1} B_{t,t+1} \) in state contingent nominal securities. Thus, in the assets market at the beginning of period \(t \) they face the constraint

\[
M_t + B_t + E_t Q_{t,t+1} B_{t,t+1} \leq W_t.
\]

(2.2)

Consumption must be purchased with money according to the cash-in-advance constraint
\[P_t C_t \leq M_t, \]
(2.3)

where \(P_t \) is the price of the consumption good in units of money.

At the end of the period, the households receive the labor income \(W_t N_t \), where \(N_t = 1 - L_t \) is labor and \(W_t \) is the nominal wage rate and pay lump sum taxes, \(T_t \). Thus, the nominal wealth households bring to period \(t + 1 \) is

\[\mathbb{W}_{t+1} = M_t + R_t B_t + B_{t,t+1} - P_t C_t + W_t N_t - T_t \]
(2.4)

The households’ problem is to maximize expected utility (2.1) subject to the restrictions (2.2), (2.3), (2.4), together with a no-Ponzi games condition on the holdings of assets.

The following are first order conditions of the households problem:

\[\frac{u_L(t)}{u_C(t)} = \frac{W_t}{P_t} \frac{1}{R_t} \]
(2.5)

\[\frac{u_C(t)}{P_t} = R_t E_t \left[\frac{\beta u_C(t + 1)}{P_{t+1}} \right] \]
(2.6)

\[Q_{t,t+1} = \beta \frac{u_C(t + 1)}{u_C(t)} \frac{P_t}{P_{t+1}}, \ t \geq 0 \]
(2.7)

From these conditions we get \(E_t Q_{t,t+1} = \frac{1}{R_t} \). Condition (2.5) sets the intratemporal marginal rate of substitution between leisure and consumption equal to the real wage adjusted for the cost of using money, \(R_t \). Condition (2.6) is an intertemporal marginal condition necessary for the optimal choice of risk-free nominal bonds. Condition (2.7) determines the price of one unit of money at time \(t + 1 \), for each state of nature \(s^{t+1} \), normalized by the conditional probability of occurrence of state \(s^{t+1} \), in units of money at time \(t \).
Firms The firms are competitive and prices are flexible. The production function of the representative firm is

\[Y_t \leq A_t N_t. \]

The firms maximize profits \(P_t Y_t - W_t N_t \). The equilibrium real wage is

\[\frac{W_t}{P_t} = A_t. \tag{2.8} \]

Government The policy variables are lump sum taxes, \(T_t \), interest rates, \(R_t \), money supplies, \(M_t \), state noncontingent public debt, \(B_t \). State-contingent debt is in zero net supply, \(B_{t,t+1} = 0 \). We can define a policy as a mapping for the policy variables \(\{T_t, R_t, M_t, B_t, t \geq 0, \text{ all } s^d\} \), that maps sequences of quantities, prices and policy variables into sets of sequences of the policy variables.

The period by period government budget constraints are

\[M_t + B_t = M_{t-1} + R_{t-1} B_{t-1} + P_{t-1} G_{t-1} - P_{t-1} T_{t-1}, t \geq 0 \]

Let \(Q_{t,t} \equiv Q_{t,t+1}Q_{t+1,t+2}\ldots Q_{s-1,s} \), with \(Q_{t,t} = 1 \). If \(\lim_{T \to \infty} E_t Q_{t,T+1} \mathbb{W}_{T+1} = 0 \), the sequence of budget constraints are

\[\sum_{s=t}^{\infty} E_t Q_{t,s+1} M_s (R_s - 1) = \mathbb{W}_t + \sum_{s=t}^{\infty} E_t Q_{t,s+1} P_s [G_s - T_s] \tag{2.9} \]

that can be rewritten as

\[E_t \sum_{s=0}^{\infty} \beta^s u_C(t + s) C_{t+s} \left(\frac{R_{t+s} - 1}{R_{t+s}} \right) = u_C(t) \frac{\mathbb{W}_t}{P_t} + E_t \sum_{s=0}^{\infty} \beta^s u_C(t + s) \frac{[G_{t+s} - T_{t+s}]}{R_{t+s}} \tag{2.10} \]

using (2.7).

Market clearing Market clearing in the goods and labor market requires
We have already imposed market clearing in the money and debt markets.

Equilibrium An equilibrium is a sequence of policy variables, quantities and prices such that the private agents solve their problems given the sequences of policy variables and prices, the budget constraint of the government is satisfied, markets clear, and the policy sequence is in the set defined by the policy.

The equilibrium conditions for the variables \(\{C_t, L_t, R_t, M_t, B_t, T_t, Q_{t,t+1}\} \) are the resources constraints

\[
C_t + G_t = A_t(N_t - 1),
\]

and

\[
N_t = 1 - L_t.
\]

3. **Single instrument feedback rules.**

3.1. **Rules that implement unique equilibria.**

Here we assume that policy is conducted with either interest rate or money supply feedback rules. We show the main result of the paper, that there are single
instrument feedback rules that implement a unique equilibrium, globally, for the allocation and prices. The proposition for an interest rate feedback rule follows:

Proposition 3.1. When policy is conducted with the interest rate feedback rule

\[
R_t = \frac{\xi_t}{E_t \frac{\beta u_C(t+1)}{P_{t+1}}}, \tag{3.1}
\]

where \(\xi_t\) is an exogenous variable, there is a unique global equilibrium.

Proof: When policy is conducted with the rule (3.1), the intertemporal condition (2.6) can be written as

\[
\frac{u_C(t)}{P_t} = \xi_t, \quad t \geq 0, \tag{3.2}
\]

so that

\[
R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}. \tag{3.3}
\]

It follows that the intratemporal conditions (2.12) can be written as

\[
\frac{u_C(t)}{u_L(t)} = \frac{\beta E_t \xi_{t+1}}{A_t}, \quad t \geq 0 \tag{3.4}
\]

These conditions together the resource constraints, (2.11), determine uniquely the variables \(C_t, L_t, P_t, R_t\), for every date and state. The money balances, \(M_t\), is determined uniquely using the cash-in-advance conditions (2.3), with equality.\(^2\)

The budget constraints (2.10) are satisfied for multiple paths of the taxes and state noncontingent debt levels.

The forward looking interest rate feedback rules that implement unique global equilibria resemble to some extent the rules that appear to be followed by cen-

\(^2\)Notice that when the nominal interest rate is zero the cash-in-advance constraint does not have to hold with equality. This multiplicity of the money stock has no implications for the uniqueness of the price level or allocation.
tral banks. The nominal interest rate reacts positively to the forecast of future consumption. It also reacts positively to the forecast of the future price level. While the reaction to future economic activity is standard in the policy debate, the reaction to the price level is not. Central banks appear to respond to forecasts of future inflation, rather than the price level, when deciding on nominal interest rates.

Depending on the exogenous process for \(\xi_t \), with the feedback rule we consider, it is possible to implement different allocations. In particular, the first best allocation, at the Friedman rule of a zero nominal interest rate, can be implemented. We discuss this in the next section.

An analogous proposition to the one above is obtained when policy is conducted with a particular money supply feedback rule.

Proposition 3.2. Suppose the cash-in-advance constraint holds exactly.\(^3\) When policy is conducted with the money supply feedback rule,

\[
M_t = \frac{C_t u_C(t)}{\xi_t},
\]

where \(\xi_t \) is an exogenous variable, there is a unique global equilibrium.

Proof: Suppose policy is conducted according to (3.5). Then, using the cash in advance conditions (2.3) with equality, we obtain

\[
\frac{u_C(t)}{P_t} = \xi_t
\]

(3.6)

Using the intertemporal conditions (2.6), we have

\[
R_t = \frac{\xi_t}{\beta E_\xi t \xi_{t+1}}.
\]

(3.7)

\(^3\)This is always the case if the interest rate is strictly positive.
The two conditions above, (3.6) and (3.7), together with the intratemporal conditions (2.12) and the resource constraints, (2.11) determine uniquely the four variables, C_t, L_t, P_t, R_t in each period $t \geq 0$ and state s'. The taxes and debt levels satisfy the budget constraint (2.10).

Also for this money supply rule, for a particular choice of the process of ξ_t, it is possible to implement a particular, desirable, equilibrium. The same process ξ_t implements the same equilibrium whether the rule is the interest rate rule (3.1) or the money supply rule (3.5), with one qualification. The implementation of a unique equilibrium with a money supply rule relies on the cash in advance constraint holding exactly. That is not necessarily the case when the interest rate is zero. Instead, with an interest rate rule there is always a unique equilibrium for the allocations and price level. The money stock is not unique when the cash in advance constraint does not hold with equality.

3.2. Implementing equilibria with interest rate feedback rules.

3.2.1. The first best allocations and equilibria with constant inflation.

Depending on the particular stochastic process for ξ_t, it is possible to use the interest rate feedback rules in Proposition 3.1, (3.1), to implement a unique equilibrium from a large set of possible equilibria, some more desirable than others. The welfare maximizing equilibrium, which in this simple environment is the first best, will have the nominal interest rate equal to zero. Another example of an equilibrium that can be implemented has zero, or constant, inflation. We will now describe the processes for ξ_t that implement either the first best or equilibria with constant inflation.

There is only one first best allocation but there are many possible equilibrium processes for the price level associated with that allocation. Varying the process for ξ_t it is possible to implement uniquely each of those equilibria.
With \[\xi_t = \frac{1}{k\beta^t}, \quad t \geq 0, \]
where \(k \) is a positive constant, from (3.3), \(R_t = 1 \). Condition (3.4) becomes

\[\frac{u_C(t)}{u_L(t)} = \frac{1}{A_t}, \quad t \geq 0 \]

which, together with the resource constraint (2.11) gives the first best allocation described by the functions \(C_t = C^*(A_t, G_t), \ L_t = L^*(A_t, G_t) \). The price level \(P_t = P(A_t, G_t; .) \) can be obtained as the solution for \(P_t \) of (3.2), i.e.

\[\frac{u_C(C^*(A_t, G_t), L^*(A_t, G_t))}{P_t} = \frac{1}{k\beta^t}, \quad t \geq 0, \]

For each \(k \), which is a policy parameter, there is a unique equilibrium process for the price level. The equilibrium money stock is obtained using the cash-in-advance constraint, \(M_t = P(A_t, G_t; .)C^*(A_t, G_t) \), if it holds with equality. If it did not hold exactly, there would be multiple equilibrium paths for the money stock that would have no implications for the determination of the prices and allocations.

Notice that there are still other possible equilibrium processes for the path of the price level, or realized inflation, that are associated with the Friedman rule. The interest rate feedback rule with

\[\xi_t = \frac{\mu_t}{k(\rho\beta)^t}, \]

where \(\mu_t = \rho\mu_{t-1} + \varepsilon_t \), and \(\varepsilon_t \) is a white noise, will also imply \(R_t = 1 \), and achieve the first best allocation with a process for the price level given by

\[\frac{u_C(C^*(A_t, G_t), L^*(A_t, G_t))}{P_t} = \frac{\mu_t}{k(\rho\beta)^t}, \quad t \geq 0. \quad (3.8) \]

The choice of \(k \) affects only the level of the price, while the process of \(\mu_t \) affects
realized inflation. The conditional average inflation is the symmetric of the real interest rate.

Allocations where inflation is always zero, $\frac{P_{t+1}}{P_t} = 1$, can also be implemented, as long as the real interest rate is non-negative in every state, $\frac{u_{C}(t)}{E_t[\beta u_{C}(t+1)]]} \geq 1$. It is a feature of these models that there are multiple equilibrium allocations associated with zero inflation. There are also many price levels consistent with zero inflation. Again, for a particular ξ_t we are able to implement a unique sequence for the allocations and price level with zero inflation.

Let $C_t = C(R_t, \cdot)$ and $L_t = L(R_t, \cdot)$ be the functions that solve the system of equations given by the intratemporal condition, (2.12), and the resource constraint, (2.11), for C_t and L_t as functions of R_t, as well as A_t and G_t. Let

$$R_t = \frac{u_{C}(C(R_t, \cdot), L(R_t, \cdot))}{\beta E_t u_{C}(C(R_{t+1}, \cdot), L(R_{t+1}, \cdot))}, \ t \geq 0. \quad (3.9)$$

Any sequence of nominal interest rates $\{R_t\}$ satisfying this difference equation, and corresponding allocations $C(R_t, \cdot)$ and $L(R_t, \cdot)$, is such that inflation is zero. The rule implements a unique equilibrium in the set of equilibria with zero inflation.

3.2.2. Cashless economies.

In the economies we have analyzed, the nominal interest rate affects the allocations because it distorts the decision between consumption and leisure. It is common in the recent literature with sticky prices (see Woodford, 2003) to consider economies that in the limit do not have this distortion. In those cashless economies under flexible prices there is a single allocation independent of inflation. All policy does under flexible prices is to determine the price level. A variation of the feedback rule we consider is able to determine a unique equilibrium path for the price level.

One way to interpret in our set up a cashless economy is by considering a cash in advance constraint with velocity, and take velocity to the limit where it is
infinite. Let the cash-in-advance condition be
\[
\frac{P_tC_t}{v_t} \leq M_t,
\]
where \(v_t \to \infty\).

In the limit case, the intratemporal condition is
\[
\frac{u_C(t)}{u_L(t)} = \frac{1}{A_t}, \quad t \geq 0,
\]
because the nominal interest rate does not distort choices, and the intertemporal condition is
\[
\frac{u_C(t)}{P_t} = E_t \left[R_{t+1} \frac{\beta u_C(t + 1)}{P_{t+1}} \right].
\]
The nominal interest rate is now \(R_{t+1}\), rather than \(R_t\), because with infinite velocity the consumption good is a credit good and can be paid at the assets market in the following period according to the timing of transactions that we have considered.

Because the interest rate does not affect the allocations, the allocation is the first best allocation, described by the functions \(C^*(A_t, G_t)\) and \(L^*(A_t, G_t)\). In contrast to the economy with a monetary distortion, in these economies there is a unique nominal interest rate path consistent with zero inflation that is given by
\[
R_{t+1} = \frac{u_C(C^*(A_t, G_t), L^*(A_t, G_t))}{\beta u_C(C^*(A_{t+1}, G_{t+1}), L^*(A_{t+1}, G_{t+1}))}, \quad t \geq 0.
\]
In this case of a cashless economy the policy rule (3.1), in Proposition 3.1, would have to be modified to
\[
R_{t+1} = \frac{\xi_t}{\beta u_C(t + 1)};
\]
14
and would implement a unique equilibrium for the price level described by

\[
\frac{u_C(C^*(A_t, G_t), L^*(A_t, G_t))}{P_t} = \xi_t
\]

A particular equilibrium with zero inflation can be implemented, if the interest rate rule is followed with

\[
\xi_t = \frac{u_C(C^*(A_t, G_t), L^*(A_t, G_t))}{P}, t \geq 0.
\]

(3.14)

3.3. Alternative interest rate rules

The interest rate rules that we consider in this paper are able to implement unique equilibria globally. In this section, we relate the interest rate rule we propose to the ones in the literature that concentrate on conditions for local determinacy or on examples of global indeterminacy.

We consider a linear approximation to the model in the neighborhood of a steady state.\(^4\) We analyze alternative rules, where the interest rate reacts to inflation or to the price level. The latter rules are less standard, but they are still considered in the literature, such as the Wicksellian rules in Woodford (2003), and are closer to the ones we propose. Those alternative rules guarantee a determinate equilibrium, meaning that there is a unique local equilibrium but multiple solutions that diverge from the neighborhood of the steady state, and that suggest the existence of alternative equilibria in the nonlinear model\(^5\). Instead, the analog to the rule in Proposition 3.1 eliminates all other solutions, other than the one in the neighborhood of the steady state.

\(^4\)Independent work by Loisel (2006) takes a generic linear model and shows that with policy rules analogous to the ones we use in this paper it is possible to exclude explosive paths that originate in the neighborhood of a steady state. He applies this method to a linear approximation of the standard new keynesian model as in Woodford (2003). Because his analysis is local he cannot establish global uniqueness, as we do.

\(^5\)See Benhabib, Schmit-Grohe and Uribe (2001b) and Schmitt-Grohe and Uribe (2001). Those alternative equilibria cannot be characterized in the linear model that is only a valid approximation in the neighborhood of the steady state.
We consider a cashless economy, as is common in the literature, where, under flexible prices, the allocations are uniquely determined independently of policy. Instead, in the model with nominal rigidities, that we will consider in Section 5, the multiplicity is extended to the real allocations. We analyze the simple model to make the points more clearly, but the conclusions go through, more forcefully, in a model with both a monetary distortion and nominal rigidities.

The cash in advance constraint is (3.10), with infinite velocity, $v_t \to \infty$. The intratemporal conditions of households and firms imply the marginal conditions (3.11). The allocations are determined uniquely by these marginal conditions together with the resource constraints, (2.11), and are not affected by policy.

We now proceed as is standard in the literature and linearize the model around a steady state with constant consumption and leisure and a constant target for inflation, π^*. For simplicity, let $G_t = 0$.

The linearized equilibrium conditions (3.11), (3.12) and (2.11), which are the relevant equilibrium conditions together with the policy function, can be summarized by

$$E_t \left(\hat{R}_{t+1} - \hat{\pi}_{t+1} \right) = -c_n E_t \left(\hat{A}_{t+1} - \hat{A}_t \right)$$

(3.15)

where $\pi_{t+1} = \frac{P_{t+1}}{P_t}$, $c_n = \frac{u_C}{u_c} \phi_c + \frac{a_n}{b_n} (\phi_c + 1)$; $b_n = \phi_c - \kappa \phi_L > 0$; $a_n = \frac{u_C}{u_c} - \frac{\kappa u_L}{u_c}$; $\kappa = \frac{N}{L}$ and $\phi_x = \frac{\partial \phi_L(t)}{\partial x} \frac{u_C(t)}{u_L(t)} x$, $x = C, L$.

Notice that the equilibrium condition (3.15) has \hat{R}_{t+1} instead of \hat{R}_t. In the alternative timing used by Woodford (2003) among others the interest rate would be indexed by t. This has implications for whether rules should be forward, current or backward in order to guarantee local determinacy. A current rule in Woodford (2003) with \hat{R}_t reacting to $\hat{\pi}_t$ is equivalent to a backward rule in this environment with \hat{R}_{t+1} reacting to $\hat{\pi}_t$ (see Carlstrom and Fuerst (2001) for this discussion).

Suppose now that policy was conducted by setting the nominal interest rate path, exogenously, equal to a sequence of numbers. This would allow to determine a unique path for the conditional expectation of inflation $E_t \hat{\pi}_{t+1}$, but would not determine the initial price level, nor the distribution of realized inflation across
states.

We consider now alternative interest rate rules that we compare to the ones in Proposition 3.1. These alternative rules are able to determine locally a unique equilibrium in the neighborhood of a steady state, but do so at the expense of multiple other solutions of the linear system that diverge from that neighborhood.

Suppose policy was conducted with an interest rate rule where the nominal interest rate \hat{R}_{t+1} reacts to π_t, i.e. the deviations of inflation from the target π^*,\(^6\)

\[
\hat{R}_{t+1} = \tau \pi_t - c_n E_t \left(\hat{A}_{t+1} - \hat{A}_t \right).
\]

Then

\[
\tau \pi_t - E_t (\hat{\pi}_{t+1}) = 0.
\]

With $\tau > 1$, the solution is locally determinate and given by $\pi_t = 0$. In deviations from the steady state levels, the solution for the nominal interest rate is equal to the real interest rate, $\hat{R}_{t+1} = -c_n E_t \left(\hat{A}_{t+1} - \hat{A}_t \right)$. This is the standard case discussed in the literature where the Taylor principle, with $\tau > 1$, is necessary to guarantee a determinate equilibrium.

With an active interest rate rule reacting to inflation, there is indeed, in the linear model, a single local equilibrium but multiple explosive solutions. If inflation in period zero was $\pi_t = \varepsilon > 0$, the solution would diverge. These divergent solutions may in the nonlinear model converge to another steady state or cycle around this steady state, and be equilibrium paths\(^7\).

Wicksellian interest rate rules as in Woodford (2003) have the interest rate respond to the price level rather than inflation. Again here the equivalent rule to the one in Woodford will have the interest rate in period $t + 1$ respond to the price level in t. In deviations from the deterministic steady state, with a constant

\(^6\)The term $c_n E_t \left(\hat{A}_{t+1} - \hat{A}_t \right)$ is included in the rule only for the convenience of determining a particular path, the one where inflation is equal to the constant target. It is irrelevant for the issue of determinacy.

\(^7\)See Benhabib, Schmitt-Grohe and Uribe (2001b).
inflation target, that rule is

\[\hat{R}_{t+1} = \phi \hat{P}_t - c_n \left(\hat{A}_{t+1} - \hat{A}_t \right), \]

where \(\phi > 0.\) Substituting the rule in the equilibrium condition (3.15) with
\[\hat{\pi}_{t+1} = \hat{P}_{t+1} - \hat{P}_t, \]
we get

\[(1 + \phi) \hat{P}_t - E_t \hat{P}_{t+1} = 0 \quad (3.16) \]

With \(\phi > 0,\) there is a determinate equilibrium, locally, in the neighborhood of the steady state. The price level will be growing at the constant inflation, possibly zero. There are however, also in this case, other solutions of the linear model, that diverge from the neighborhood of the steady state. Also with these rules it is not possible to exclude those other solutions as possible candidates to equilibria that cannot be analyzed in the linear model. In the linear model they are explosive and do not satisfy certain bounds that may be imposed arbitrarily. In the nonlinear model even those bounds may be satisfied and there will be in general alternative equilibria.

The rule we propose (3.1) in Proposition 3.1. is also a price targeting rule in the sense that the interest rate reacts to the price level rather than inflation. With our timing it is a current rule (in Woodford (2003) would be a forward rule) and the coefficient on the price level is one. In the linear, cashless, model, the rule in Proposition 3.1 would be

\[\hat{R}_{t+1} = \xi_t + \hat{P}_{t+1} - c_n \hat{A}_{t+1}. \quad (3.17) \]

This and (3.15) implies

\[\hat{P}_t = -\xi_t - c_n \hat{A}_t. \]

8\(\hat{P}_t \) are log deviations of the price level from the stationary path \(P_t = P^* (\pi^*)^{t+1}, \) where \(\pi^*\) is the constant (gross) inflation target.

9Again, here, the term \(-c_n \left(\hat{A}_{t+1} - \hat{A}_t \right)\) is irrelevant for the issue of determinacy.
which determines a unique equilibrium originating in the neighborhood of the steady state. All the other solutions of the linear system are excluded. The equilibrium is unique. If $\xi_t = -c_n \hat{A}_t$, then the solution will be

$$\hat{P}_t = 0$$

as before.

We have shown that the policy rule (3.17) in the linear model is able to generate a unique equilibrium, eliminating the the other solutions that are present when the alternative rules considered above are followed, whether inflation or price level targeting rules. The result in Proposition 3.1. is stronger because uniqueness is shown in the actual model of the economy, and not in the linear approximation. The interest rate rule (3.1) allows to implement a unique equilibrium globally. With the interest rate feedback rules used above in the nonlinear system, the multiplicity of equilibria originating locally is eliminated and so is the multiplicity of equilibria originating anywhere else, except for the single equilibrium that the rule implements.

4. Interpreting the results. The importance of an infinite horizon.

In this section, we show in the nonlinear model that the multiplicity of equilibria with interest rate rules is a general result. The rules in Proposition 3.1 are the exception. Furthermore, we show that the assumption of a infinite horizon is a crucial assumption for the results in that proposition.

If the economy had a finite horizon, an equilibrium would be characterized by a finite number of equations and unknowns. A necessary condition for there to be a unique equilibrium is that the number of equations equals the number of the unknowns. Single instrument rules, whether these are sequences of numbers or feedback rules, functions of future, current or past variables, are not sufficient
restrictions. They are never able to pin down unique equilibria. Instead in an infinite horizon, because the system of equations is infinite dimensional, the way policy is conducted matters, and, as we show, there are single instrument rules that guarantee unique global equilibria.

In a finite horizon economy, determining the degrees of freedom in conducting policy amounts to simply counting the number of equations and unknowns. We proceed to considering the case where the economy lasts for a finite number of periods $T + 1$, from period 0 to period T. After T, there is a subperiod for the clearing of debts, where money can be used to pay debts, so that

$$ W_{T+1} = M_T + R_T B_T + P_T G_T - P_T T_T = 0 $$

The relevant equilibrium conditions in this finite horizon economy are the intratemporal conditions, (2.12) for $t = 0, ..., T$, the cash in advance constraints, (2.3) also for $t = 0, ..., T$, and the intertemporal conditions

$$ u_C(t) \frac{P_t}{P_{t+1}} = R_t E_t \left[\frac{\beta u_C(t+1)}{P_{t+1}} \right], \quad t = 0, ..., T - 1 $$

$$ Q_{t,t+1} = \beta \frac{u_C(t+1)}{u_C(t)} \frac{P_t}{P_{t+1}}, \quad t = 0, ..., T - 1 $$

and, for any $0 \leq t \leq T$, and state s^t.10

These conditions restrict the set of equilibrium allocations, prices and policy variables. From the resource constraints, (2.11), the intratemporal conditions (2.12), and the cash in advance constraints, (2.3), we obtain the functions $C_t = C(R_t)$ and $L_t = L(R_t)$ and $P_t = \frac{M_t}{C(R_t)}$, $t \geq 0$. The system of equations can be

10The budget constraints

$$ \sum_{s=0}^{T-t} E_t Q_{t,t+s+1} M_{t+s} (R_{t+s} - 1) = W_t + \sum_{s=0}^{T-t} E_t Q_{t,t+s+1} P_{t+s} [G_{t+s} - T_{t+s}] $$

where $E_t Q_{T+1} \equiv \frac{E_t Q_t}{R_t}$ restrict, not uniquely, the levels of state noncontingent debts and taxes. Assuming these policy variables are not set exogenously we can ignore this restriction.
summarized by the following dynamic equations:

\[u_C(C(R_t), L(R_t)) \frac{M_t}{C(R_t)} = \beta R_t E_t \left[u_C(C(R_{t+1}), L(R_{t+1})) \frac{M_{t+1}}{C(R_{t+1})} \right], \quad t = 0, ..., T - 1 \quad (4.1) \]

Note that the total number of money supplies and interest rates is the same. Let the number of states in period \(t \) be \(\Phi_t \). There are \(\Phi_0 + \Phi_1 + ... + \Phi_T \) of each monetary policy variable. The number of equations is \(\Phi_0 + \Phi_1 + ... + \Phi_{T-1} \). In order for there to be a unique equilibrium need to add to the system \(\Phi_0 + \Phi_1 + ... + 2\Phi_T \) independent restrictions. If the interest rates are set exogenously in every state, the degrees of freedom are the number of terminal nodes. Similarly, if the money supply was set exogenously in every state, there would be the same number of degrees of freedom. In this sense, the two monetary instruments are equivalent in this economy.

In the finite horizon economy, there are multiple equilibria whether single instrument policy is conducted with sequences of numbers or with feedback rules, current, backward or forward functions of endogenous variables. These add the same number of restrictions to a finite dimensional system. In particular, when policy is conducted with the forward looking feedback rule in Proposition 3.1, the policy for the interest rate in the terminal period \(R_T \), cannot be a function of variables in period \(T + 1 \). There is still the same number of degrees of freedom.

In the infinite horizon economy that we have analyzed in the previous sections, the equilibrium conditions can be summarized by the dynamic equations

\[u_C(C(R_t), L(R_t)) \frac{M_t}{C(R_t)} = \beta R_t E_t \left[u_C(C(R_{t+1}), L(R_{t+1})) \frac{M_{t+1}}{C(R_{t+1})} \right], \quad t \geq 0 \quad (4.2) \]

together with the budget constraints, (2.10). The budget constraints are satisfied by the choice of lump-sum taxes.

Suppose the path of interest rates is set exogenously in every date and state. It is straightforward to see that in general there are multiple solutions for the path of
the money supply and therefore also for the path of the price level. Similarly, there
would also be multiple equilibria if the money supply was set exogenously in every
date and state. In this case there would be multiple solutions for the interest rates
and also for the allocations. This same result that there are multiple equilibria
with single instrument policies also holds when policy is conducted with interest
rate rules that depend on current or past variables. Those rules clearly preserve
the same degrees of freedom in the determination of policy.

We now describe a well known counterexample to the general result of multi-
plicity with single instrument rules. For preferences that are additively separable
and logarithmic in consumption, a money supply policy guarantees a unique global
equilibrium. The interest of this example is that the mechanism is similar to the
one that guarantees uniqueness when the policy rules are the ones in propositions
3.1. or 3.2.

The difference equation (4.2) would become

$$\frac{1}{M_t} = \beta R_t E_t \left[\frac{1}{M_{t+1}} \right], \ t \geq 0. \quad (4.3)$$

When the money supply is set exogenously in every state, there is a unique equilib-
rium for the path of the nominal interest rates \(\{R_t\} \).\(^{11}\) The allocations are there-
fore uniquely determined from (2.12) and (2.11). With the allocations uniquely
determined and the money supply set exogenously, the price level is also deter-
mined uniquely from the cash-in-advance constraint (2.3) with equality. In this
case there is a unique equilibrium with policy conducted with only one instrument,
the money supply.

The mechanism that allows to pin down a unique equilibrium for these pref-
rences with money supply policy is similar to the one that allows the rules in
propositions 3.1 and 3.2 to guarantee unique global equilibria. Notice that the
right hand side of the difference equation (4.2) is either exogenous or a function
of contemporaneous information, as in the case of the rules in those propositions.

\(^{11}\)This is the case as long as the resulting interest rate \(R_t > 0 \).
The dynamic system of equations becomes a static system of equations for the endogenous variables.

There is an analogous intuition to the one in this model in models with overlapping generations. In those models, while the first welfare theorem always holds in a finite horizon, it does not in the infinite horizon. In the infinite horizon it may be possible to improve welfare of the initial old generation by transferring resources from the successive generations. In a finite horizon those transfers would break down, when the last generation would be unable to obtain its compensation\(^\text{12}\).

5. Sticky prices

We have shown the results in the simplest model with flexible prices. Under flexible prices, an interest rate target, in the sense of a policy that sets the path of nominal interest rates equal to a sequence of numbers, is able to pin down a unique equilibrium for the real allocations, but not the price level. Instead if prices are sticky, the same policy will generate multiplicity of real allocations. For this reason the interest of policy rules that may guarantee uniqueness is higher when nominal rigidities are considered.

In this section we show that the results derived above extend to an environment with prices set in advance. We modify the environment to consider price setting restrictions. There is a continuum of firms, indexed by \(i \in [0, 1]\), each producing a differentiated good also indexed by \(i\). The firms are monopolistic competitive and set prices in advance with different lags.

The households have preferences described by (2.5) where \(C_t\) is now the composite consumption

\[
C_t = \left[\int_0^1 c_t(i)^{\frac{\theta-1}{\theta}} di \right]^{\frac{\theta}{\theta-1}}, \theta > 1, \tag{5.1}
\]

and \(c_t(i)\) is consumption of good \(i\). Households minimize expenditure \(\int_0^1 p_t(i)c_t(i)di\),

\(^{12}\)Loosely speaking, in our set up, the infinite horizon allows to bring in from the future additional restrictions that help determining unique equilibria.
where \(p_t(i) \) is the price of good \(i \) in units of money, to obtain a given level of the composite good \(C_t \), (5.1). The resulting demand function for each good \(i \) is given by

\[
c_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} C_t,
\]

(5.2)

where \(P_t \) is the price level,

\[
P_t = \left[\int p_t(i)^{1-\theta} \, di \right]^{\frac{1}{1-\theta}}.
\]

(5.3)

The households’ intertemporal and intratemporal conditions are as before, (2.5), (2.6) and (2.7).

The government must finance an exogenous path of government purchases \(\{G_t\}_{t=0}^{\infty} \), such that

\[
G_t = \left[\int_0^1 g_t(i)^{\frac{\theta-1}{\theta}} \, di \right]^{\frac{1}{1-\theta}}, \theta > 0.
\]

(5.4)

Given the prices on each good \(i, p_t(i) \), the government minimizes expenditure on government purchases by deciding according to

\[
\frac{g_t(i)}{G_t} = \left(\frac{p_t(i)}{P_t} \right)^{-\theta}.
\]

(5.5)

Market clearing for each good implies

\[
c_t(i) + g_t(i) = A_t n_t(i),
\]

(5.6)

while in the labor market it must be that, in equilibrium,

\[
\int_0^1 n_t(i) \, di = N_t.
\]

(5.7)
Using (5.6), (5.7), (5.2), and (5.5), we can write the resource constraints as

\[
(C_t + G_t) \int_0^1 \left(\frac{p_t(i)}{P_t} \right)^{-\theta} di = A_t N_t. \tag{5.8}
\]

We consider now that firms set prices in advance. A fraction \(\alpha_j \) firms set prices \(j \) periods in advance with \(j = 0, \ldots, J - 1 \). Firms decide the price for period \(t \) with the information up to period \(t - j \) to maximize profits\(^{13}\):

\[
E_{t-j} [Q_{t-j,t+1} (p_t(i)y_t(i) - W_t n_t(i))],
\]

subject to the production function

\[
y_t(i) \leq A_t n_t(i)
\]

and the demand function

\[
y_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} Y_t, \tag{5.9}
\]

where \(y_t(i) = c_t(i) + g_t(i) \) and \(Y_t = C_t + G_t \).

The optimal price for a firm that is setting the price for period \(t, j \) periods in advance, is

\[
p_t(i) = p_{t,j} = \frac{\theta}{(\theta - 1)} E_{t-j} \left[\frac{W_t}{A_t} \right], \tag{5.10}
\]

where

\[
\eta_{t,j} = \frac{Q_{t-j,t+1} P_t^\theta Y_t}{E_{t-j} [Q_{t-j,t+1} P_t^\theta Y_t]}.
\]

The price level at date \(t \) can be written as

\[
P_t = \left[\sum_{j=0}^{J-1} \alpha_j (p_{i,j})^{1-\theta} \right]^{\frac{1}{1-\theta}}. \tag{5.11}
\]

\(^{13}\)Profits at \(t \) are priced by \(Q_{t-j,t+1} \) because of the timing of transactions where profits are received at the end of the period to be used for consumption the period after.
When we compare the two sets of equilibrium conditions, under flexible and prices set in advance, here we are adding more variables, the prices of the differently restricted firms, but we also add the same number of equations. To show that the same arguments in the previous section also work here, it is useful to rewrite the equilibrium conditions.

Substituting the state contingent prices $Q_{t-j,t+1}$ in the price setting conditions (5.10), and using the intertemporal condition (2.6) as well as the households’ intratemporal condition (2.5), we obtain the intratemporal conditions

$$E_{t-j} \left[\frac{u_C(t)}{R_t} P_t^{\theta-1} A_t (1 - L_t) - \frac{\theta}{(\theta - 1)} u_L(t) P_t^{\theta-1} (1 - L_t) \frac{P_t}{p_{t,j}} \right] = 0, \quad j = 0, \ldots, J - 1.$$

(5.12)

Notice that for $j = 0$, the condition becomes

$$\frac{u_C(t)}{u_L(t)} = \frac{\theta R_t}{(\theta - 1) A_t p_{t,0}}.$$

(5.13)

If $J = 1$, meaning that there are only flexible price firms, $p_{t,0} = P_t$ and we would get the intratemporal condition obtained under flexible prices,

$$\frac{u_C(t)}{u_L(t)} = \frac{\theta R_t}{(\theta - 1) A_t},$$

(5.14)

corresponding to (2.12), for the case where $\theta \to \infty$.

The resource constraints can be written as

$$(C_t + G_t) \sum_{j=0}^{J-1} \alpha_j \left(\frac{p_{t,j}}{P_t} \right)^{-\theta} = A_t N_t.$$

(5.15)

The proposition follows:

Proposition 5.1. When prices are set in advance, if policy is conducted with the interest rate feedback rule

$$R_t = \frac{\xi_t}{E_t \frac{\beta u_C(t+1)}{P_{t+1}}}.$$
where ξ_t is an exogenous variable, there is a unique equilibrium. Similarly, if policy is according to the money supply feedback rule,

$$M_t = \frac{C_t u_C(t)}{\xi_t}$$

and the cash-in-advance constraints holds exactly, there is also a unique equilibrium.

Proof: When policy is conducted with the interest rate feedback rule $R_t = \frac{\xi_t}{E_t \frac{u_C(t+1)}{P_{t+1}}}$, then the intertemporal condition (2.6) implies

$$\frac{u_C(t)}{P_t} = \xi_t, \ t \geq 0$$

(5.16)

and

$$R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}, \ t \geq 0$$

(5.17)

These conditions together with the resource constraints (5.15), the intratemporal conditions (5.12), the conditions on the price level, (5.11), and the cash in advance constraints, (2.3), with equality, determine uniquely all the variables $C_t, L_t, P_t, p_{t,j}, j = 0, \ldots, J - 1$, and $M_t, p_{0,j}, j = 1, \ldots, J - 1$ are exogenous.

The budget constraints (2.10) are satisfied for multiple paths of the taxes and state noncontingent debt levels.

Clearly the same arguments in the proof of Proposition 3.2, for the money supply rule under flexible prices, apply here.

We have shown that the results extend to environments with sticky prices, in particular when prices are set in advance in a staggered fashion. In the following section we illustrate the results by describing how the interest rate rule works in a simpler economy where all firms set prices one period in advance.
5.1. An example: All firms set prices one period in advance.

We now consider an economy where all firms set prices one period in advance. This is a simple example that illustrates how the interest rate rule is able to determine unique equilibria also when prices are sticky.

In a model where there is only one type of firms that set prices one period in advance, the equilibrium conditions can be summarized by the conditions that follow. When the nominal interest rate policy is conducted according to \(R_t = \frac{\xi_t}{E_t e_{C(t)_{t+1}}} \), then, as before we have

\[
\frac{u_C(t)}{P_t} = \xi_t, \; t \geq 0
\]

(5.18)

and

\[
R_t = \frac{\xi_t}{\beta E_t \xi_{t+1}}, \; t \geq 0
\]

(5.19)

The other equilibrium conditions are

\[
E_{t-1} \left[\frac{u_C(t)}{R_t} A_t (1 - L_t) - \frac{\theta}{(\theta - 1)} u_L(t) (1 - L_t) \right] = 0, \; t \geq 1
\]

\[
C_t + G_t = A_t (1 - L_t).
\]

(5.20)

which determine the variables \(C_t, L_t \) and the predetermined prices \(P_t \), with \(P_0 \) exogenous. Money supply is determined from the cash in advance constraint

\[
P_t C_t = M_t.
\]

(5.21)

6. Concluding Remarks

The problem of multiplicity of equilibria under an interest rate policy has been addressed, after Sargent and Wallace (1975) and McCallum (1981), by an extensive literature on determinacy under interest rate rules. Interest rate feedback rules
on endogenous variables such as the inflation rate, or the price level, can, with appropriately chosen coefficients, deliver determinate equilibria, i.e. unique local equilibria in the neighborhood of a steady state. There are still multiple solutions to the system of difference equations that approximates linearly the model. Those additional solutions suggest other equilibria that can be analyzed in the nonlinear model. Indeed, it is a well known result that there are in general multiple equilibria when policy is conducted with single instrument rules.

In this paper we show that there are interest rate feedback rules, and also money supply feedback rules, that implement unique global equilibria. This result does not depend on preferences or other similar characteristics of the environment. It is also robust to the consideration of nominal rigidities such as prices set in advance. The way this rule works in pinning down unique equilibria is by eliminating expectations of future variables from the dynamic equations.

The feedback rules that we propose can be used to pin down the welfare maximizing equilibria, but the policy maker can also implement uniquely other, less desirable, equilibria.

An important assumption for our results, which is the standard assumption in the literature, is that the time horizon is infinite. Otherwise, single instrument feedback rules would never be able to pin down unique equilibria. Another important assumption is that fiscal policy is Ricardian, in the sense that taxes can be used as a residual variable to satisfy the budget constraint of the government.

As is also standard in the literature we assume that the nominal interest rate must be nonnegative in equilibrium but is unrestricted out of equilibrium, as in, for example, Bassetto (2004) and Schmitt-Grohe and Uribe, 2001. Benhabib, Schmitt-Grohe and Uribe (2001b) assume that the zero bound restriction applies not only in equilibrium but also to the government actions out of equilibrium. Under this alternative approach there would also be multiple equilibria in our setup. The alternative assumptions cannot be assessed empirically. In a more deeply founded model, Bassetto (2004) shows that the zero bound restriction should only be satisfied in equilibrium. There is a resemblance between this issue and
the heated controversy on Ricardian versus non-Ricardian policies in the fiscal theory of the price level14.

References

14Ricardian policies are policies such that the budget constraint of the government holds also for prices, that are not necessarily equilibrium prices, while non-Ricardian policies satisfy the budget constraint only for the equilibrium prices. In Bassetto (2004) while the budget constraint must hold also out of equilibrium, the zero bound restriction only holds in equilibrium.

