Statute Law or Case Law?*

LUCA ANDERLINI
(Georgetown University)

LEONARDO FELLI
(London School of Economics)

ALESSANDRO RIBONI
(Université de Montréal)

May 2006
Preliminary and Incomplete

Abstract. We embed a simple contracting model with ex-ante investments in which there is scope for Court intervention in a dynamic setting. In a Case Law regime each Court is tempted to behave myopically because this affords current extra gains from trade. This temptation is traded off against the effect of its ruling, as a precedent, on future ones. We model a Statute Law regime in an extreme way: no discretion is left to the Courts. This solves the time-inconsistency problem afflicting the Case Law Courts, but is costly because of its lack of flexibility.

We find that when the nature of the environment changes sufficiently often through time the Case Law regime is superior, while when the environment does not change very often the Statute Law regime dominates. Overall, our findings support the view that the Case Law regime is superior in fields in which innovation, and hence change, is central (e.g. finance), while the Codified Law regime is superior in more slow-changing ones (e.g. inheritance law).

JEL Classification: C79, D74, D89, K40, L14.
Keywords: Court Intervention, Statute Law, Case Law, Rigidity, Time-Inconsistency, Precedents.
Address for correspondence: Luca Anderlini, Georgetown University, 37th and O Streets NW, Washington DC, USA. la2@georgetown.edu

*Part of the research work for this paper was carried out while Luca Anderlini was visiting the “Ente Einaudi” in Rome and during a year-long visit at the LSE. Their generous hospitality is gratefully acknowledged. We greatly benefited from comments by Margaret Bray, Hugh Collins, Ross Cranston, Alan Schwartz, Jean Tirole and seminar participants at the Ente Einaudi and the LSE Law and Economics Forum, and the 2006 B.P. Lecture at the LSE.
1. Introduction

1.1. Motivation

Law never is, but is always about to be. It is realized only when embodied in a judgment, and in being realized, expires. There are no such things as rules or principles: there are only isolated dooms. [...]

[...] No doubt the ideal system, if it were attainable, would be a code at once so flexible and so minute, as to supply in advance for every conceivable situation the just and fitting rule. But life is too complex to bring the attainment of this ideal within the compass of human powers. — Benjamin Cardozo (1921).

If the birth takes place during a railway trip, the declaration must be rendered to the railroad officer responsible for the train, who will draw a transcript of verbal declarations, as prescribed for birth certificates. Said railroad officer will hand over the transcript to the head of the railroad station where the train next stops. The head of such station will transmit the documents to the local registrar’s office to be appropriately recorded. — Law of the Republic of Italy (2000)

At face value, of course US Supreme Court Justice Cardozo is a lot wiser than Italian legislators trying to prescribe rules well beyond the powers of their “compass.” The question remains, however. Is the pragmatism of Case Law simply always superior to the rigidity of Statute Law? Are there universes in which Statute Law is instead superior to Case Law?

1This the text of Article 40 of the regulations for registrar’s offices, issued as Decree Number 393 of November 3rd 2000 of the President of the Republic of Italy. Regulations being issued to ensure the streamlining of procedures, as prescribed by Article 2, comma 12, of Law Number 15 of May 1997 of the Republic of Italy. Translation by the authors.

The original Italian text is: “Se la nascita avviene durante un viaggio per ferrovia, la dichiarazione deve essere fatta al responsabile del convoglio che redige un processo verbale con le dichiarazioni prescritte per gli atti di nascita e lo consegna al capo della stazione nella quale si effettua la prima fermata del convoglio. Il capo della stazione lo trasmette all’ufficiale dello stato civile del luogo, per la trascrizione.” The original reference in Italian Law is: “Articolo 40, Decreto del Presidente della Repubblica 3 Novembre 2000 n. 396. Regolamento per la revisione e la semplificazione dell’ordinamento dello stato civile, a norma dell’articolo 2, comma 12, della legge 15 maggio 1997, n. 127.” See, for instance, http://www.normeinrete.it/
After all Statute Law was the prevailing system throughout a substantial part of organized human societies for many centuries after the rise of Ancient Rome. Is it then that the ascent of Case Law is like a scientific discovery? It just was not known before the 11th or 12th century, and once human societies cottoned on to it (those that were able to for historical or other reasons) they became unambiguously better off; just like the use of penicillin after 1929. Once one poses the question in these terms, surely the unambiguous dominance view seems too simplistic to be trusted completely.

Our goal here is to build a simple stylized model in which, depending on the value of some significant parameters, which can be interpreted as embodying the speed of social and/or technological change, Case Law sometimes performs better than Statute Law while the reverse can also be true. Almost as a byproduct, our analysis also affords us some insight into the dynamics of precedents in a Case Law regime.

There does not seem to be a general consensus as to whether the distinction we analyze here between Statute Law and Case Law corresponds in any general way to the distinction between Civil and Common Law, and we do not purport to resolve, or even fully describe, the debate. It is tempting, however, to draw a parallel in this way since at least historically Common Law relied on few, if any, statutes while Civil Law starts from a large body of statutes rooted in Roman Law dating back to the sixth century. In both Common and Civil Law the body of statutes has expanded dramatically through time, which makes the parallel problematic.

However, we believe that our analysis has at least some normative implications concerning the distinction between Civil and Common Law. This is because the gaps left open by the Statute Book are filled by the Courts according to different criteria in the two systems. In a Common Law regime the gaps are filled utilizing the body of applicable precedents, which is what we model below. In a Civil Law system the gaps are filled by interpretation of the code. At least in the world we model here, the use of precedents stands out as a more (economically) efficient way to fill the gaps. Common Law adapts via the use of precedents, while Civil Law changes little unless
the Statute Book itself is changed. If one were designing Civil Law and Common Law from scratch, then it would be efficient to strive for more detailed legislation in the Civil Law than in the Common Law world. If this were the case, in this redesigned world, the distinction we make between Statute and Case Law would broadly correspond to the distinction between Civil and Common Law.

Before we move on, it is also important to mention a large body of empirical literature known as “Law and Finance” which examines the relative performance of Common and Civil Law in Financial and related markets.\(^2\) We believe that our results lend support to the main finding — namely that Common Law dominates Civil Law in this fast-paced section of the economy. We return to this point extensively in Section 4 which concludes the paper.

1.2. Preview and Relation to the Literature

We abstract completely from “judicial bias.” This not because we do not subscribe to the “pragmatist” view of the judicial process that can be traced back to at least Cardozo (1921) and subsequently Posner (2003).\(^3\) It is mainly to make sure that our results can be clearly attributed to the source we focus on (rigidity versus time-inconsistency). Introducing judicial bias in a simple-minded way would seem to have a more detrimental effect on welfare when Courts have more discretion,\(^4\) and hence bias the results in favor of Statute Law. This is almost certainly a simplistic first shot at a problem that has not, to our knowledge, received much attention theoretically or

\(^{2}\)See for instance La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997), La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1998), La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1999), La Porta, Lopez-de-Silanes, Shleifer, and Vishny (2002), La Porta, Lopez-de-Silanes, and Shleifer (2005), Lombardo and Pagano (1999), Lombardo and Pagano (2002).

\(^{3}\)There is a flourishing literature on the effects (and remedies for) judicial bias interpreted in a broad sense that ranges from “idiosyncracies” in the judges’ preferences (Bond 2004a, Gennaioli and Shleifer 2005, among others) to “corruption” of the Courts (Ayres 1997, Bond 2004b, Legros and Newman 2002, among others).

\(^{4}\)We use the word discretion in the standard sense that it has acquired in Economics. Legal scholars are often uneasy about the term. Another way to express the same concept would be to say that Case Law Courts exercise “flexibility.” Given that Courts in our model are always welfare-maximizers, it would be appropriate to say that, under Case Law, Courts exercise “flexibility with a view to commercial interest.” We are grateful to Ross Cranston for making us aware of this terminological issue.
empirically. The differential impact of judicial bias or corruption in Case and Statute Law regimes, coupled with the possible differential effects of the legal system on the general level of corruption in society, seems a field that is ripe for future research but is well beyond the scope of this work.

We also ignore the distinction between “lower” and “appellate” Courts. The efficiency rationale for the existence of an appeal system has receive vigorous scrutiny in recent years (Shavell 1995, Daughety and Reinganum 1999, Daughety and Reinganum 2000, Spitzer and Talley 2000, among others), but, again, its differential impact in the Case and Statute Law regimes is far from obvious both theoretically and empirically. As with judicial bias, we prefer to maximize the transparency of our results and leave the distinction out of the model. In our model, under Case Law, all Courts have, in principle, the same ability to create precedents that affect future Courts. Clearly, in reality, appellate Courts differ from lower Courts in this respect. Nevertheless we proceed as we do in the belief that the general flavor of our results would survive in a richer model.⁵

Our interest is in the comparison of the regimes of Case and Statute Law in the economic sphere of course, particularly within the realm of what economists call Contract Theory. During the last two decades, since the seminal work of Grossman and Hart (1986) and Hart and Moore (1990), much energy has been devoted to the analysis of ex-ante contracting under an incompleteness constraint.⁶ The focus is on a situation in which ex-ante contracting is critical to the parties’ incentives to undertake relationship-specific investments that enhance economic efficiency. The parties’ ability to contract on the relevant variables is assumed to be incomplete. This has proved to be an extremely fertile ground to address a variety of issue of first-order economic importance.⁷

⁵For instance Gennaioli and Shleifer (2005) insist that the Court that changes the relevant body of precedents is an appellate Court.
⁶See Kaplow and Shavell (2002, Section 4) for a general discussion of incomplete contracts and enforcement.
⁷To cite but a few contributions, this literature has shed light on vertical and lateral integration (Grossman and Hart 1986), the allocation of ownership over physical assets (Hart and Moore 1990), the allocation of authority (Aghion and Tirole 1997) and power (Rajan and Zingales 1998).
We model both the Statute Law regime and the Case Law regime in a way that is designed to bring the differences into stark relief, more than capture the fact that the distinction between the two can often be subtle and hard to pinpoint precisely. Our model comprises a heterogeneous "pool" of ex-ante contracts; a draw from this pool materializes each period. Under Case Law, in each period a Court of Law can, in principle, decide to either void or uphold the parties’ contract.\(^8\) Our model is designed so that, from the point of view of ex-ante welfare, it is optimal to void a certain fraction of contracts, while the remainder should be upheld.

Under Statute Law, all Courts are constrained to behave in the same way (by the relevant part of the "Statute Book"). Thus, under Statute Law, either all contracts are upheld, or they are all voided. Under Case Law, each Court may be either constrained by precedents (which evolve according to a dynamic process fully specified below) or unconstrained.\(^9\) In the latter case the Case Law Court has complete discretion to either void or uphold the parties contract.

Our point of departure is the observation that under Case Law, whenever a Court of Law exercises discretion it does so necessarily ex-post. In the class of contracting problems on which we focus, this has far-reaching implications for the behavior of Courts under Case Law. Under Case Law, when a Court exercises discretion on whether to void or uphold the parties’ contract, the ex-ante incentives to invest no longer matter because the parties’ investments and strategic decisions are sunk. This biases the Court’s decision away from ex-ante efficiency (in our stylized model always towards enforcing the parties’ contract). In short, under Case Law, because they

\(^8\)Note that we are therefore ruling out the possibility that the Court might change the terms of the contract, while enforcing some of its basic provisions. On this point, see Kaplow (2000) and Kaplow and Shavell (2002).

\(^9\)In reality, of course, it is seldom the case that a Case Law Court is either completely constrained or completely unconstrained by precedents. Each case has many dimensions, and precedents can have more or less impact according to how “fitting” they are to the current case. We model this complex interaction in a simple way. With a certain probability existing precedents “apply,” and with the complementary probability existing precedents simply “do not apply.” We do not believe that the main flavor of our results would change in a richer model capturing more closely this complex interaction, although the latter obviously remains an important target for future research.
exercise discretion (when they in fact do) *ex-post*, the Courts suffer from a *time-inconsistency* problem. If they just maximized the (ex-post) welfare of the *current* contracting parties, they would uphold those contracts that it is optimal to void *ex-ante*. Under Case Law, the Courts’ decisions may suffer from *present-bias*.\(^{10}\)

Under Case Law, the Courts’ bias towards excessive upholding is mitigated, although not entirely resolved, by the *dynamics of precedents*. Each Court is tempted to uphold the parties’ contract even when it should not do so. However, voiding the contract of the current contracting parties, via the dynamics of precedents, increases the probability that *future* Courts will be *constrained* to do the same, thus raising *ex-ante* welfare. The decision of each Court to void or uphold is pinned down by the trade-off between an instantaneous gain from upholding, and a future gain, via precedent-setting, from voiding the parties’ contract.

Our first main finding is that the time-inconsistency problem prevents the Case Law regime from reaching full efficiency. This, surprisingly, is true under very general conditions on the dynamics of precedents, and regardless of the rate at which the future is discounted.\(^{11}\) Eventually, under Case Law, the Courts *must* succumb to the present-bias. This is because they trade off a present increase in (ex-post) welfare, which does not shrink as time goes by, against a *marginal* effect on the decisions of future Courts. Under very general circumstances the latter eventually shrinks to be arbitrarily small. As a corollary, it is then relatively straightforward to argue that if the heterogeneity of the pool of cases that comes before the Courts is “sufficiently small,” the Statute Law will be superior to Case Law. This is because the loss from a Statute Law fixed rule will eventually become smaller than the loss from the time-inconsistency problem under Case Law.

Our first main finding relies on a characterization of the evolution of precedents through time in a Case Law regime. At least since Cardozo (1921) and Posner (2004),

\(^{10}\)The term “time-inconsistency” is a standard piece of modern economic jargon. It can be used whenever an ex-ante decision is potentially reversed ex-post. The term “present-bias” describes well the type of time-inconsistency that afflicts the Case Law Courts in our set-up. We use the two terms in a completely interchangeable way.

\(^{11}\)Provided it is positive.
the economic efficiency properties of this process have been the subject of intense scrutiny.\footnote{Gennaioli and Shleifer (2005) explicitly analyze how the process behaves differently when judges are allowed to “overrule” as opposed to when they are only allowed to “distinguish” relative to previous cases. The selection of efficient rules under Case Law, based on the self-selection of cases that are brought before Courts has been studied by Landes (1971), Priest (1977) and Rubin (1977) among others. More recently, Ben-Shahar (1999) has argued that flexibility may be detrimental in a Case Law regime on grounds entirely separate from our considerations here. In short, he argues that the anticipation of Court flexibility may give incentives to the parties (the “right-holders”) to over-invest in preventive (“anti-erosion”) measures in the contract they write.} In these writings, we often find a hypothesized “convergence” toward efficient rules under Case Law. How do our result stack against this hypothesis then? Roughly speaking, we find that, in our simple model, on the one hand the evolution of precedents \textit{improves welfare through time}, but on the other it is not guaranteed to yield efficient rules in the limit. In fact the opposite is true for the reasons we have outlined above.

A useful corollary of our genuinely dynamic analysis with an open-ended time horizon is a further characterization of the mechanics of the evolution of precedents under Case Law. In our simple model, we find that the seemingly complex decision of a forward looking Court under Case Law, taking into account the precedent-setting effects of its decision today on an open-ended sequence of future Courts can be pinned down in a relatively straightforward way. Borrowing some basic tools from dynamic optimization we can in fact see that the precedent-setting part of the decision of today’s Court can be viewed as maximizing the \textit{per-period} ex-ante payoff of \textit{tomorrow’s} Court, while the rest of the sequence washes out of the computation appropriately.

Armed with the characterization we have just described, a further result follows for the Case Law regime. Suppose that the dynamics of precedents are such that whenever a contract is voided then all future contracts are more likely to be voided because of binding precedents, regardless of whether it is ex-ante optimal to uphold or to void them. Suppose also that this effect increases monotonically as today’s Court issues a ruling with larger and larger breadth.\footnote{The breadth of a ruling is a single-dimensional variable in our model.} Then, today’s Court will choose a breadth for its ruling that trades off the benefits of a higher probability of voiding a contract tomorrow which should be voided, versus the costs of voiding a contract
tomorrow which instead should be upheld from an ex-ante welfare point of view.

1.3. Overview

For ease of exposition, all proofs are in the Appendix. In the numbering of equations, Lemmas, and so on, a prefix of “A” indicates that the relevant item is in the Appendix.

2. The Model

2.1. A Simple and a Rich Environment

In Anderlini, Felli, and Postlewaite (2006) (henceforth AFP) we study a multiple-widget contracting with asymmetric information model in which the Court optimally voids some of the parties’ contract in order to obtain separation in equilibrium.

The backdrop for our analysis here is a numerical version of the parametric model in AFP, with the added possibility that the environment may in fact be such that the Court should uphold all contracts.

We refer to the latter as the “simple” environment (with fewer widgets, denoted F) and to the former as the “rich” environment (with more widgets, denoted M). The environment is F with probability $1 - \rho$ and is M with probability ρ.

In both environments there is a buyer and a seller, both risk-neutral. The buyer has private information on the costs and values of the relevant widgets. He can be of a “high” type (denoted H) or of a “low” type (denoted L), with equal probability. The buyer knows his type at the time of contracting, while the seller does not. As standard, there is an ex-ante contracting stage, followed by an investment stage, followed by the ex-post trading stage. For simplicity, at the ex-ante contracting stage the buyer has all the bargaining power, while the seller has all the bargaining power ex-post.

In the simple environment there are two widgets, w_1 and w_2. These two widgets are mutually exclusive because they require a widget- and relationship-specific investment of $I = 1$ on the part of the buyer. The buyer can only undertake one investment, and the cost and value of either widget without investment are zero. The cost and value
of w_i ($i = 1, 2$) if the buyer’s type is $\tau \in \{\mathcal{L}, \mathcal{H}\}$ are denoted by c_i^τ and v_i^τ respectively. When investment takes place we take each of them to be as follows

$$
\begin{array}{c|cc}
\text{Type } \mathcal{H} & w_1 & w_2 \\
\hline
v_1^\mathcal{H} = 22, & c_1^\mathcal{H} = 1 & v_2^\mathcal{H} = 26, & c_2^\mathcal{H} = 1 \\
\text{Type } \mathcal{L} & v_1^\mathcal{L} = 1, & c_1^\mathcal{L} = 0 & v_2^\mathcal{L} = 4, & c_2^\mathcal{L} = 1
\end{array}
$$

The rich environment is the same as the simple environment, save for the fact that a third widget w_3 is available. This widget is not contractible at the ex-ante stage, and does not require any investment.\footnote{In AFP we argue that the ex-ante non-contractibility of w_3 is without loss of generality for the class of contracts we consider here.} Widget w_3 can be traded ex-post via a “spot” contract. Trading w_3 yields a positive surplus only if the buyer’s type is \mathcal{L}. We take the cost and values of the three widgets in the rich environment to be

$$
\begin{array}{c|ccc}
\text{Type } \mathcal{H} & w_1 & w_2 & w_3 \\
\hline
v_1^\mathcal{H} = 22, & c_1^\mathcal{H} = 1 & v_2^\mathcal{H} = 26, & c_2^\mathcal{H} = 1 & v_3^\mathcal{H} = 71, & c_3^\mathcal{H} = 95 \\
\text{Type } \mathcal{L} & v_1^\mathcal{L} = 1, & c_1^\mathcal{L} = 0 & v_2^\mathcal{L} = 4, & c_2^\mathcal{L} = 1 & v_3^\mathcal{L} = 60, & c_3^\mathcal{L} = 0
\end{array}
$$

The Court may intervene in the parties’ contractual relationship by voiding contracts for either w_1 or w_2.\footnote{In AFP we argue that not allowing the Court to void contracts for w_3 is without loss of generality.} Because of the hold-up problem generated by the widget- and relationship-specific investment, if the Court voids contracts for either w_1 or w_2 or both, then the corresponding widget will not be traded.

In the simple environment, the Court has no welfare-enhancing role to play. When all contracts are enforced, in equilibrium both types of buyer invest in and trade w_2. This yields full social efficiency. The total expected surplus from trading (net of investment) is 13.

Equilibria in the rich environment are fully characterized in AFP. When the Court enforces all contracts, there is a unique equilibrium, which involves inefficient pooling. Both types of buyer invest in and trade w_2, and, since the buyer’s type is not
revealed, they also trade w_3 ex-post. The total expected surplus from trading (net of investment) in this case is 31. This outcome is clearly short of social efficiency since the type \mathcal{H} buyer trades w_3, which generates negative surplus (-24).

If instead the Court intervenes and voids contracts for w_2, the two types of buyer separate: behaving differently, they reveal their private information at the ex-ante contracting stage. The unique equilibrium outcome is that type \mathcal{H} buyer invests in and trades w_1, but does not trade w_3, while the type \mathcal{L} buyer does not invest in and does not trade either w_1 or w_2; he only trades w_3 ex-post. In this case the total expected surplus from trading (net of investment) is 40. While this outcome does not achieve full social efficiency it dominates the pooling outcome since it avoids the inefficient trade of w_3 from the part of the type \mathcal{H} buyer.16

In AFP it is also shown that voiding contracts for w_2 is the best that the Court can do in the rich environment.17

To sum up, if the environment is simple a welfare-maximizing Court can do no better than not intervening at all. Intuitively, Court intervention has no value since disclosure of the buyer’s private information itself has no social value.

If instead the environment is rich then an active Court that intervenes and voids contracts for w_2 will enhance social welfare. By intervening, the Court induces the two types of buyer to disclose information at the ex-ante contracting stage. This disclosure has positive social value in the rich environment.

From now on, by a Court that voids (indicated by \mathcal{V}) the parties’ contract we mean a Court that will void contracts for w_2 (and uphold all others), while by a Court that upholds (indicated by \mathcal{U}) the parties’ contract we mean a Court that will uphold all contracts.

16Full social efficiency in the rich environment would entail that both types of buyer invest in and trade w_2, while only the type \mathcal{L} buyer trades w_3 ex-post. The total expected surplus from trading (net of investment) in this case would be 43.

17Recall that the Court can choose between voiding no contracts, voiding contracts for w_1, voiding contracts for w_2 and voiding contracts for both w_1 and w_2. In AFP the case of mixed strategies for the Court is also considered. We do not allow probabilistic Court choices in the present set-up.
2.2. The Full Static Environment

Consider first the Case Law regime. In each period the environment is \mathcal{F} (simple) with probability $1 - \rho$ and is \mathcal{M} (rich) with probability ρ. Each contracting case (simple or rich) comes equipped with its own specific legal characteristics, which determine, as we will explain shortly, whether the current body of precedents apply.

We model the legal characteristics of the case as random variables $\ell_{\mathcal{F}}$ and $\ell_{\mathcal{M}}$, each uniformly distributed over $[0, 1]$, describing the legal characteristics of the case in the \mathcal{F} and \mathcal{M} environments respectively.\(^{18}\) This allows us to specify the body of precedents in a particularly simple way.

The body of precedents \mathcal{J} is represented by four numbers in $[0, 1]$ so that $\mathcal{J} = (v_{\mathcal{F}}, u_{\mathcal{F}}, v_{\mathcal{M}}, u_{\mathcal{M}})$ with the restriction that $v_{\mathcal{F}} < u_{\mathcal{F}}$ and $v_{\mathcal{M}} < u_{\mathcal{M}}$. Once the nature of the environment (\mathcal{F} or \mathcal{M}) is determined, the legal characteristics of the case are determined ($\ell_{\mathcal{F}}$ or $\ell_{\mathcal{M}}$ as appropriate).

The interpretation of $\mathcal{J} = (v_{\mathcal{F}}, u_{\mathcal{F}}, v_{\mathcal{M}}, u_{\mathcal{M}})$ is straightforward. Once the legal characteristics of the case are determined, the body of precedents is seen to either apply or not apply and in which direction. Say that the environment is \mathcal{F}, then if $\ell_{\mathcal{F}} \leq v_{\mathcal{F}}$ the body of precedents constrains the Court to void, if $\ell_{\mathcal{F}} \geq u_{\mathcal{F}}$ the body of precedents constrains the Court uphold, while if $v_{\mathcal{F}} < \ell_{\mathcal{F}} < u_{\mathcal{F}}$ the Court has discretion over the case. A similar interpretation applies if the environment is \mathcal{M} so that the Court is constrained to void, constrained to uphold, or has discretion according to whether $\ell_{\mathcal{M}} \leq v_{\mathcal{M}}$, $\ell_{\mathcal{M}} \geq u_{\mathcal{M}}$ or $v_{\mathcal{M}} < \ell_{\mathcal{M}} < u_{\mathcal{M}}$.

In each period, the contracting parties observe the nature of the environment, the body of precedents, and the legal characteristics of the case. Therefore, they know whether the Court will be constrained by precedents or not and in which direction if so. They will also correctly forecast the Court’s decision if it has discretion. In other

\(^{18}\)The fact that we take the legal characteristics of a contracting case to be represented by a single-dimensional variable is obviously simplistic. While a richer model of this particular feature of a contract would be desirable, it is completely beyond the scope of our analysis here. The modeling route we follow is just the simplest one that will do the job in our set-up.
words, under Case Law, in each of the environments, the parties anticipate correctly whether the Court will uphold or void the contract.

In the Statute Law environment the parties correctly anticipate what the Court will do since it is constrained to either void or uphold all contracts — regardless of the environment.

In the four possible combinations of environment (F or M) and Court ruling (V or U) the parties’ behavior is easily determined. If the environment is F and the ruling is V, then the parties will invest in and trade w_1, with an expected (across buyer types) beginning-of-period payoff for the Court as of the beginning of the period of $\Pi(F, V) = 10$. If the environment is F and the ruling is U, the parties will invest in and trade w_2 with an expected (across buyer types) beginning-of-period payoff for the Court of $\Pi(F, U) = 13$. If the environment is M and the ruling is V the parties will separate as we described above and the expected (across buyer types) beginning-of-period payoff for the Court of is $\Pi(M, V) = 40$. If the environment is M and the ruling is U, then inefficient pooling obtains as we described above and the expected (across buyer types) beginning-of-period payoff for the Court of is $\Pi(M, U) = 31$.

Notice that the numbers we have posited clearly bear out the fact that in the F environment the Court should uphold, while in the M environment the Court should void. The beginning-of-period expected payoffs trivially satisfy

$$10 = \Pi(F, V) < \Pi(F, U) = 13 \quad \text{and} \quad 40 = \Pi(M, V) > \Pi(M, U) = 31 \quad (3)$$

2.3. The Statute Law Regime

Under Statute Law, the Court is allowed no discretion to condition its choice of V or U on the environment being F or M. On the other hand, under Statute Law the Court can fully commit to a particular — uncontingent — behavior.

Since it is straightforward, we move directly to the dynamic version of the model for the Statute Law regime. Time is indexed by $t = 0, 1, 2, \ldots$. A sequence of Courts face a stream of (iid) parties. The planner’s (the legislature’s) discount factor is $\delta \in$
(0, 1). The optimal Statute Law regime is obtained by picking a single ruling $\mathcal{R} \in \{\mathcal{V}, \mathcal{U}\}$ so as to solve

$$\max_{\mathcal{R} \in \{\mathcal{V}, \mathcal{U}\}} (1 - \delta) \sum_{t=0}^{\infty} \delta^t [(1 - \rho)\Pi(\mathcal{F}, \mathcal{R}) + \rho\Pi(\mathcal{M}, \mathcal{R})]$$

(4)

The maximization problem in (4) is extremely simple since it is not genuinely dynamic. In fact, given the particular numbers in (3) it can easily be fully solved explicitly. We state the following without proof.

Proposition 1. Statute Law Equilibrium Welfare: The maximized value of (4) is denoted by $\mathcal{W}_S(\rho)$. We refer to this value as the equilibrium welfare of the Statute Law regime. The ruling that solves the maximization problem (4) is denoted by $\mathcal{R}_S(\rho)$. We refer to this as the equilibrium ruling under Statute Law.

The equilibrium ruling $\mathcal{R} = \mathcal{R}_S(\rho)$ is \mathcal{U} for ρ between 0 and a threshold value $\rho^*_S \in (0, 1)$ and is \mathcal{V} for ρ between ρ^*_S and 1. With the particular numbers in (3) we get $\rho^*_S = 1/4$.

The intuition behind Proposition 1 is straightforward. A single ruling, valid in all periods and environments must be chosen. Given the structure of payoffs in (3) the payoff to \mathcal{U} is larger in the \mathcal{F} environment, while the payoff to \mathcal{V} is larger in the \mathcal{M} environment. It then follows that choosing \mathcal{U} is optimal if the probability of the \mathcal{F} environment is sufficiently large, while choosing \mathcal{V} is optimal if the probability of the \mathcal{M} environment is sufficiently large.

2.4. The Time-Inconsistent Court

Suppose that the Court is completely unable to commit to voiding or upholding the parties’ contract in either environment. Then the only equilibrium outcome in each

\[\text{Problem (4) is trivially equivalent to } \max_{\mathcal{R} \in \{\mathcal{V}, \mathcal{U}\}} (1 - \rho)\Pi(\mathcal{R}, \mathcal{F}) + \rho\Pi(\mathcal{R}, \mathcal{M}).\]

\[\text{Clearly, when } \rho = \rho^*_S \text{ both the } \mathcal{V} \text{ and } \mathcal{U} \text{ rulings solve problem (4). The threshold form of } \mathcal{R}_S(\rho) \text{ clearly does not depend on the particular numbers involved, but only on the inequalities in (3). The value } \rho^*_S = 1/4, \text{ on the other hand, obviously depends on the particular numbers at hand.}\]
period is that the Court enforces the contract, and hence that the pooling equilibrium prevails.

To see this consider, in either environment, the subgame following the buyer’s decision to invest in \(w_2 \), his offer of a contract for \(w_2 \), which is accepted by the seller. At this point, when the contract is potentially brought to Court the buyer’s investment is *sunk*, and hence the decision of which widget to trade is irreversible.

If the Court were to void the contract, the parties will be unable to trade \(w_2 \), and hence the only expected surplus to materialize would be (using the numbers in (1) and (2)) 0 if the environment is \(F \) (since no trade would take place) and 18 if the environment is \(M \) (from the trade of \(w_3 \) for both types of buyer).

If the Court were to uphold the contract on the other hand the surplus from \(w_2 \) would also materialize. In this case the Court’s payoff (again using the numbers in (1) and (2)) would be 14 if the environment is \(F \) (from the trade of \(w_2 \) for both types of buyer) and 32 if the environment is \(M \) (from the trade of both \(w_2 \) and \(w_3 \) for both types of buyer).\(^{21}\)

Hence in either environment the Court would ex-post decide to enforce the parties’ contract. But as we pointed out in Subsection 2.1 above, if this is the case, the only equilibrium outcome is the inefficient pooling in which the buyer’s type is not revealed.

We summarize the (continuation) payoffs to the Case Law Court in a given period, as of the time it actually is called upon to decide whether to void or uphold the parties’ contract below for future reference.

\[
0 = \hat{\Pi}(F, V) < \hat{\Pi}(F, U) = 14 \quad \text{and} \quad 18 = \hat{\Pi}(M, V) < \hat{\Pi}(M, U) = 32 \quad (5)
\]

In a nutshell, what we have just described is the source of the time-inconsistency problem that will afflict the Court in a Case Law regime. Viewed from the point at which it is called upon to decide, the optimal decision for the Case Law Court is

\(^{21}\)Notice that in both cases we are describing what matters for the Court in the subgame, namely the *continuation* payoffs (expected surplus). This is the reason for excluding the investment \(I = 1 \) from the computation.
to uphold if the environment is \mathcal{F}, just as it is using the beginning-of-period payoffs in (3). However, viewed from the point at which it is called upon to decide, the optimal decision for the Case Law Court is to also uphold if the environment is \mathcal{M}: the opposite than it is using the beginning-of-period payoffs in (3). When the environment is \mathcal{M} the “present-bias” tells the Case Law Court to act in a manner that is inconsistent with the maximization of ex-ante welfare.

2.5. The Case Law Regime: The Precedents Technology

In a Case Law environment each Court is subject to the present-bias “temptation” (potential time-inconsistency) we described in Subsection 2.4 above. The temptation, however, is mitigated by the fact that each Court decision affects, via precedents, the decisions of subsequent Courts.

We begin by describing how the precedents affect the degree of discretion that each Case Law Court has.

As we described in Subsection 2.2, we think of the “body of precedents” at the beginning of time t, denoted by \mathcal{J}^t as being summarized by four numbers so that $\mathcal{J}^t = (v_F^t, u_F^t, v_M^t, u_M^t)$. Let $d_F^t = u_F^t - v_F^t$ and $d_M^t = u_M^t - v_M^t$. The t-th Case Law Court is constrained by precedents with probability $1 - d_F^t$ and $1 - d_M^t$ in each environment respectively. For simplicity, we assume that if this is the case, the body of precedents does not change between period t and period $t + 1$ so that $\mathcal{J}^{t+1} = \mathcal{J}^t$.

When a Case Law Court is not constrained by precedents (given \mathcal{J}^t this happens with probability d_F^t in environment \mathcal{F} and with probability d_M^t in environment \mathcal{M}), it can choose to void or uphold the parties’ contract at its discretion, according to whether the environment is \mathcal{F} or \mathcal{M}. A Case Law Court that exercises discretion can also choose the breadth of its ruling. We take this to be a single number $b^t \in [0, 1]$, with $b^t = 0$ interpreted as a maximally narrow ruling, and $b^t = 1$ as a maximally broad one.

The discretionary ruling $\mathcal{R}^t \in \{V, U\}$ of the t-th Case Law Court and the state of the environment $\mathcal{E}^t \in \{\mathcal{F}, \mathcal{M}\}$, together with the breadth of its ruling determine how
the body of precedents \(J^t\) is modified to yield the \(J^{t+1}\) in which the \(t + 1\)-th Case Law Court will operate.

Therefore, the precedents technology in the Case Law regime can be viewed as a map \(J : [0, 1]^5 \times \{V, U\} \times \{F, M\} \rightarrow [0, 1]^4\), so that \(J^{t+1} = J(J^t, b^t, R^t, E^t)\).

Typically, the map \(J\) will embody the workings of a complex body of legal mechanisms and constitutional arrangements. It will also embody complex interaction effects that go, for instance from a broad upholding in, say, state \(F\) to an increased probability that future Courts will be forced to uphold contracts in state \(M\).

Somewhat surprisingly, we are able to carry out most of the analysis imposing a rather weak structure on \(J\).

Assumption 1. Dynamics of Precedents: The map \(J\) satisfies the following conditions:

(i) **(Residual Discretion)** Assume that \(J^t\) is such that \(d_{M}^t > 0\) and \(d_{F}^t > 0\). Then \(J^{t+1} = J(J^t, b^t, R^t, E^t)\) is such that \(d_{M}^{t+1} > 0\) and \(d_{F}^{t+1} > 0\), whatever the values of \(b^t\), \(R^t\) and \(E^t\).

(ii) **(Zero Breadth)** For any ruling \(R^t\) and any environment \(E^t\), we have that \(J^t = J(J^t, 0, R^t, E^t)\) (so that in this case \(J^{t+1} = J^t\)).

The first condition in Assumption 1 simply asserts that the influence of precedents is never able to take discretion completely away from future Courts. This seems a compelling element of the very essence of a Case Law regime.

The second condition in Assumption 1 states that, regardless of the ruling it issues and of the environment, any Case Law Court can ensure (setting \(b^t = 0\)) that the breadth of its ruling is small enough so as to have no effect on future Courts. This condition merits some further comments.

First of all, the “zero breadth” condition of Assumption 1 greatly simplifies the technical side of our analysis. In particular it implies certain monotonicity properties of the dynamics of the Case Law regime that substantially streamline our arguments.
Statute Law or Case Law?

below. It should also be noted, however, that the basic trade-off between the present-bias temptation and the precedents effect does not depend on the availability of zero breadth rulings in the Case Law regime. Moreover, the main result of the paper — namely that the Statute Law regime is sometimes superior to the Case Law one — would survive intact the removal of the zero breadth condition. This is simply because removing available choices for those Case Law regime Courts that exercise discretion would trivially weakly decrease equilibrium welfare.

Finally, the possibility that a Case Law regime Court might decide to narrow down on purpose the precedential effect that its ruling has on future cases does correspond to reality. For instance in the US, a commonly used formula is for a Court to declare that they wish to “restrict the holding to the facts of the case.” In some other instances the Court may choose not to publish the opinion in an official Reporter. Unpublished opinions are collected by various services and so are available to lawyers. The decision not to publish in an official Reporter, however, is regarded by future Courts as a signal that the Court does not want its decision to have precedential value.\(^\text{22}\)

In every period, the Case Law Court is a different player. We assume that all Case Law Courts are forward looking in the sense that they assign weight \(1 - \delta\) to the current payoff, weight \((1 - \delta) \delta\) to the per-period Court payoff in the next period, weight \((1 - \delta) \delta^2\) to the per-period Court payoff in the period after, and so on.

The \(t\)-th period Case Law Court inherits \(J^t\) from the past. Given \(J^t\), it first observes the state of the environment \(E^t \in \{F, M\}\), then it observes the outcome of the draw that determines the legal characteristics of the case (\(\ell_F\) or \(\ell_M\) as appropriate, as described in Subsection 2.2 above). Together with \(J^t\), this determines whether the \(t\)-th period Case Law Court has discretion or not. If it has discretion, the \(t\)-th Case Law Court then chooses \(R^t\) and \(b^t\), the ruling (void or uphold), and its breadth. Together with \(E^t\) and \(J^t\) this determines \(J^{t+1}\), and hence the decision problem faced by the \(t + 1\)-th period Case Law Court.

\(^{22}\)We are indebted to Alan Schwartz for pointing out to us these features of the US legal system.
Notice that the payoffs and hence the behavior of the period-\(t\) Case Law Court are affected by the behavior of the \(t\)-th period contracting parties and by all subsequent buyers and sellers. The behavior of the period-\(t\) contracting parties follows the pattern we described in Subsection 2.2 above. If the court is constrained in one direction or the other, then the parties will know this since they observe \(J^t\) and the realization of the relevant legal characteristics variable (\(\ell^t_F\) or \(\ell^t_M\), depending on the environment). As a result in the four possible combinations of environment (\(\mathcal{F}\) or \(\mathcal{M}\)) and (precedents-determined) ruling (\(U\) or \(V\)) they will behave exactly as we described in Subsection 2.2 above, yielding beginning-of-period-\(t\) payoffs to the Court as in (3).

Whenever the \(t\)-th Case Law Court is not constrained by precedents, in equilibrium its behavior will be determined by the trade-off between the present-bias we described in Subsection 2.4 and the effect of its decision, via precedents, on the decisions of future Courts. In equilibrium, however, it will also be the case that the period-\(t\) contracting parties can anticipate how the \(t\)-th Case Law Court will decide to rule in the face of this trade-off. In other words, in equilibrium the Court’s decision will be correctly anticipated by the contracting parties even when the legal characteristics of the case imply that the precedents do not bind the Court’s decision in any way. In short, in equilibrium, the beginning-of-period-\(t\) Court payoffs will be as in (3), depending on the ruling-environment pair, regardless of whether the \(t\)-th period Case Law Court is constrained by precedents or not.

Some new notation is necessary at this point to describe the strategy of the Case Law Courts when they are not constrained by precedents. The \(t\)-th Case Law Court choice of ruling \(R^t\) depends on both \(J^t\) and \(E^t\). We let \(R^t = R^t(J^t, E^t)\) denote this part of the Court’s strategy. Similarly, we let the Court’s (contingent) choice of breadth be denoted by \(b^t = b^t(J^t, E^t)\).\(^{23}\) The strategy of the \(t\)-th Case Law Court

\(^{23}\)Notice that, in principle, the choices of the \(t\)-th Case Law Court could depend on the entire history of past rulings, breadths, environments, legal characteristics (including the ones at time \(t\)) and parties’ behavior. We restrict attention to behavior that depends only on the body of precedents \(J^t\) and the type of environment \(E^t\). These are clearly the only “payoff relevant” state variables for the \(t\)-th Case Law Court. In this sense our restriction is equivalent to saying that we are restricting attention to the set of so-called *Markov-Perfect Equilibria* of the game at hand (see Maskin and Tirole (1994), Maskin and Tirole (2001) or Fudenberg and Tirole (1991, Ch. 13)). We will do so
will sometime be written concisely as $\sigma = (R_b^t, b^t)$. Given \mathcal{J}^t and σ^t, the expected payoff (as of the beginning of period t) to the t-th Case Law Court in period t, using our new notation and the one in (3), can be written as follows.

$$\Pi(\mathcal{J}^t, \sigma^t, \rho) =
(1 - \rho) \{ v_F^t \Pi(\mathcal{F}, \mathcal{V}) + (1 - u_F^t) \Pi(\mathcal{F}, \mathcal{U}) + d_F^t \Pi(\mathcal{F}, \mathcal{R}^t(\mathcal{J}^t, \mathcal{F})) \} + \rho \{ v_M^t \Pi(\mathcal{M}, \mathcal{V}) + (1 - u_M^t) \Pi(\mathcal{M}, \mathcal{U}) + d_M^t \Pi(\mathcal{M}, \mathcal{R}^t(\mathcal{J}^t, \mathcal{M})) \}$$

(6)

The interpretation of (6) is straightforward. The first two terms that multiply $(1 - \rho)$ refer to the cases in which the Court is constrained (to void and to uphold respectively) in the \mathcal{F} environment. The third term that multiplies $(1 - \rho)$ is the Court’s payoff in the \mathcal{F} environment given its discretionary ruling $\mathcal{R}^t(\mathcal{J}^t, \mathcal{F})$. Similarly, the first two terms that multiply ρ refer to the cases in which the Court is constrained (to void and to uphold respectively) in the \mathcal{M} environment. The third term that multiplies ρ is the Court’s payoff in the \mathcal{M} environment given its discretionary ruling $\mathcal{R}^t(\mathcal{J}^t, \mathcal{M})$.

Given the (stationary) preferences we have postulated, the overall payoffs to each Case Law Courts can be expressed in a familiar recursive form. Let a sequence $\sigma = \{\sigma^0, \ldots, \sigma^t, \ldots \}$ be given. Let $Z^t(\mathcal{J}^t, \sigma, \rho)$ be the expected overall payoff (as of the beginning of the period) to the t-th Case Law Court, given \mathcal{J}^t and the sequence of strategies σ. We can then write this payoff as follows.

$$Z^t(\mathcal{J}^t, \sigma, \rho) = (1 - \delta) \Pi(\mathcal{J}^t, \sigma^t, \rho) + \delta [(1 - \rho) (1 - d_F^t) + \rho (1 - d_M^t)] Z^{t+1}(\mathcal{J}^t, \sigma, \rho) + \delta (1 - \rho) d_F^t Z^{t+1}(\mathcal{J}^t, b'(\mathcal{J}^t, \mathcal{F}), \mathcal{R}^t(\mathcal{J}^t, \mathcal{F}), \sigma, \rho) + \delta \rho d_M^t Z^{t+1}(\mathcal{J}^t, b'(\mathcal{J}^t, \mathcal{M}), \mathcal{R}^t(\mathcal{J}^t, \mathcal{M}), \sigma, \rho)$$

(7)

The interpretation of (7) is also straightforward. The first term on the right-hand side is the Court’s period-t payoff. The first term that multiplies δ is the Court’s continuation payoff if its ruling turns out to be constrained by precedents throughout the rest of the paper.
Statute Law or Case Law?

so that $\mathcal{J}^{t+1} = \mathcal{J}^t$. The second term that multiplies δ is the Court’s continuation payoff if the environment at t turns out to be \mathcal{F} and the Court’s decisions at t are $[\mathcal{R}^t(\mathcal{J}^t, \mathcal{F}), b'(\mathcal{J}^t, \mathcal{F})]$, while the third term that multiplies δ is the Court’s continuation payoff if the environment at t turns out to be \mathcal{M} and the Court’s decisions at t are $[\mathcal{R}^t(\mathcal{J}^t, \mathcal{M}), b'(\mathcal{J}^t, \mathcal{M})]$.

Now recall that the t-th Case Law Court decides whether to void or uphold the contract (if it is given discretion) and chooses the breadth of its ruling after the nature of the environment (\mathcal{F} or \mathcal{M}) is known and after the buyer’s investment is sunk, and hence the decision of which widget to trade is irreversible. Hence the t-th Case Law Court continuation payoffs viewed from the time it is called upon to rule will have two components. The one that embodies the period-t payoff will be as in (5) reflecting the Court’s present-bias in the \mathcal{M} environment. The one that embodies the Court’s payoffs from period $t + 1$ onwards on the other hand will be as in (7) (with time indices shifted forward by 1 of course) since all the relevant decisions still lie ahead as far as the period-t Case Law Court is concerned.

It follows that, given \mathcal{J}^t and $\sigma_{-t} = \{\sigma^0, \ldots, \sigma^{t-1}, \sigma^{t+1}, \ldots\}$, the optimal decisions of the t-th Case Law Court σ^t can be characterized as follows. Suppose that the t-th Case Law Court is not constrained by precedents to either void or uphold the parties’ contract. Then, the values of $\mathcal{R}^t = \mathcal{R}^t(\mathcal{J}^t, \mathcal{E}^t) \in \{V, U\}$ and $b^t = b'(\mathcal{J}^t, \mathcal{E}^t) \in [0, 1]$ must solve

$$
\max_{\mathcal{R}^t \in \{V, U\}, b^t \in [0, 1]} (1 - \delta) \tilde{\Pi}(\mathcal{E}^t, \mathcal{R}^t) + \delta \{ Z^{t+1}(\mathcal{J}(\mathcal{J}^t, b^t, \mathcal{R}^t, \mathcal{E}^t), \sigma, \rho) \}
$$

(8)

It is now straightforward to define what constitutes an equilibrium in the Case Law regime.

Definition 1. Case Law Equilibrium Behavior: An equilibrium under the Case Law regime is a sequence $\sigma^* = \{\sigma^0, \ldots, \sigma^t, \ldots\}$ such that, for every $t = 0, 1, 2, \ldots$, for

24 Recall that if the ruling turns out to be constrained by precedents, the t-th Case Law Court does not make any choice and the body of precedents remains the same so that $\mathcal{J}^{t+1} = \mathcal{J}^t$.
every $\mathcal{E}^t \in \{\mathcal{F}, \mathcal{M}\}$ and for every possible \mathcal{J}^t, the pair $[\mathcal{R}^t(\mathcal{J}^t, \mathcal{E}^t), \mathcal{b}^t(\mathcal{J}^t, \mathcal{E}^t)]$ is a solution to

$$\max_{\mathcal{R}^t \in \{\mathcal{V}, \mathcal{M}\}, \phi \in [0,1]} (1 - \delta) \hat{\Pi}(\mathcal{E}^t, \mathcal{R}^t) + \delta \left\{ \mathcal{Z}^{t+1}(\mathcal{J}(\mathcal{J}^t, \mathcal{b}^t, \mathcal{R}^t, \mathcal{E}^t), \sigma^*, \rho) \right\}$$ \hspace{1cm} (9)

For any given Equilibrium Behavior as in Definition 1 we can compute the value of the expected payoff to the Case Law Court of period $t = 0$, as a function of the initial value \mathcal{J}^0. Using the notation we already established, this is denoted by $\mathcal{Z}^0(\mathcal{J}^0, \sigma^*, \rho)$.

We end this section with two remarks that streamline the analysis that follows a great deal. The first tells us that, given \mathcal{J}^0, social welfare is unambiguously defined under Case Law.

Remark 1. *Case Law Equilibrium Welfare:* Fix any initial state of of the body of precedents \mathcal{J}^0. Then the value of $\mathcal{Z}^0(\mathcal{J}^0, \sigma^*, \rho)$ is uniquely determined in the sense that if $\sigma^{*'}$ and $\sigma^{*''}$ are both equilibria under Case Law as in Definition 1, then $\mathcal{Z}^0(\mathcal{J}^0, \sigma^{*'}, \rho) = \mathcal{Z}^0(\mathcal{J}^0, \sigma^{*''}, \rho)$.

We denote by $\mathcal{W}_C(\mathcal{J}^0, \rho)$ the value of $\mathcal{Z}^0(\mathcal{J}^0, \sigma^*, \rho)$ in any equilibrium of the Case Law regime. With obvious terminology, we refer to $\mathcal{W}_C(\mathcal{J}^0, \rho)$ as the equilibrium welfare of the Case Law regime given \mathcal{J}^0.

Our second and final remark concerns the stationarity of equilibrium behavior under the Case Law regime.

Remark 2. *Stationary Case Law Equilibrium Behavior:* Without loss of generality, we can take $\sigma^* = \{\sigma_0^*, \ldots, \sigma_t^*, \ldots\}$, the equilibrium behavior under Case Law as in Definition 1, to satisfy $\sigma_{t_1}^* = \sigma_{t_2}^*$ for any t_1 and t_2.

This is without loss of generality in the sense that at least one equilibrium under the Case Law regime is always guaranteed to have this property.

25It should be noted that in equilibrium the decision of the t-th Case Law Court is required to be optimal given *every possible* \mathcal{J}^t, and not just those that have positive probability given σ^* and \mathcal{J}^0. This is a standard “perfection” requirement.
From now on, we restrict attention to Case Law equilibria that are stationary as we have just described. With a slight abuse of notation we will denote by σ^* the stationary equilibrium strategy of each and every Case Law Court so that from now on $\sigma^* = \sigma^{t*}$ for every $t = 0, 1, 2, \ldots$ Moreover, the two components of σ^* are denoted by R^* and b^* respectively, so that $\sigma^* = (R^*, b^*)$ with $R^* = R^{t*}$ and $b^* = b^{t*}$ for every $t = 1, 2, \ldots$

3. Results

3.1. Evolving Case Law and Mature Case Law

Clearly, σ^* and J^0, together with the realized values of $\{E^t\}_{t=0}^{t-1}$, $\{E_F^t\}_{t=0}^{t-1}$ and $\{E_M^t\}_{t=0}^{t-1}$ generate a realized history of the body of precedents $h^t = (J^0, J^1, \ldots, J^{t-1})$.

Given σ^*, J^0, any realized history h^t and associated realizations $\{E_F^t\}_{t=0}^{t-1}$ and $\{E_M^t\}_{t=0}^{t-1}$, let μ^t be the realization of the number of times that the Case Law Court has discretion between periods 0 and $t-1$ included and that its ruling is V.

Proposition 2. Evolving and Mature Case Law: Let any equilibrium σ^* and any J^0 for the Case Law regime be given.

Then, there exists an integer m, which in general depends on J^0 but not on ρ or on the particular equilibrium σ^*, with the following property.

Let any realized values of $\{E^t\}_{t=0}^{t-1}$, $\{E_F^t\}_{t=0}^{t-1}$ and $\{E_M^t\}_{t=0}^{t-1}$, associated history $h^t = (J^0, J^1, \ldots, J^{t-1})$ and μ^t be given, and assume that $\mu^t \geq m$. Then, regardless of the value of $E^t \in \{F, M\}$, it must be that $R^*(J^{t-1}, E^{t-1}) = U$.

3.2. Welfare Comparisons

The present-bias temptation to uphold when the environment is M lowers the equilibrium welfare under the Case Law Regime. This effect dominates when ρ is large because the M environment is more likely to obtain.
Proposition 3. **Statute and Case Law Equilibrium Welfare:** The Statute Law regime yields higher equilibrium welfare than the Case Law regime for high values of ρ.

More specifically, let any J^0 be given, and assume that this leaves positive discretion to the first Case Law Court. In other words assume that J^0 is such that both d^0_F and d^0_M are strictly positive.

Then there exists a $\rho^*_C \in (0, 1)$ such that for every $\rho \in (\rho^*_C, 1]$ we have that $W_S(\rho) > W_C(J^0, \rho)$.\(^{26}\)

4. Conclusions

To be added

Appendix

Proof of Remark 1: Consider the problem that the time $t = 0$ Case Law Court would face if it were able to choose the entire sequence $\sigma = \{\sigma^0, \sigma^1, \ldots\}$ in order to maximize its overall expected payoff, subject to the constraints imposed by the map J, and that each element σ^t of the sequence must solve (8) for every $t = 0, 1, 2, \ldots$, for every $E_t \in \{F, M\}$ and for every possible J^t.

By a completely routine application of the “one-shot deviation principle”\(^{27}\) the sequence $\sigma = \{\sigma^0, \sigma^1, \ldots\}$ solves this maximization problem if and only if it constitutes an equilibrium for the Case Law regime as in Definition 1.

As in any optimization problem, the maximized value of the objective function is obviously unique. This is enough to prove the claim. \(\blacksquare\)

Lemma A.1: Let σ^* be an equilibrium for the Case Law regime. Then for any $J \in [0, 1]^2$, any $\rho \in [0, 1]$ and any t_1 and t_2 it must be that $Z^{t_1}(J, \sigma^*, \rho) = Z^{t_2}(J, \sigma^*, \rho)$.

Proof: It is sufficient to notice that for any t_1, t_2, and J, the subgame that starts at the beginning of period t_1 with $J^{t_1} = J$ is identical to the subgame that starts at the beginning of period t_2 with $J^{t_2} = J$, which of course also implies that both subgames are identical to the subgame that starts at the beginning of period $t = 0$ with $J^0 = J$. The claim then directly follows from Remark 1. \(\blacksquare\)

\(^{26}\)In general, ρ^*_C depends on J^0.

\(^{27}\)See for instance Fudenberg and Tirole (1991, Ch. 4) or Osborne and Rubinstein (1994, Ch. 8).
Proof of Remark 2: Let $Z(\cdot, \sigma^*, \cdot)$ be the value function uniquely identified via Lemma A.1. By Remark 1 this function is the same regardless of which equilibrium σ^* we plug in. In other words, if σ^* and σ^{**} are both equilibria for the Case Law regime, then for some function $Z'(\cdot, \cdot)$ we must have that $Z(\cdot, \sigma^*, \cdot) \equiv Z(\cdot, \sigma^{**}, \cdot) \equiv Z'(\cdot, \cdot)$.

Therefore, by Definition 1, for $\sigma = \{\sigma^0, \ldots, \sigma^t, \ldots\}$ to be an equilibrium for the Case Law regime it is sufficient (see (8)) that each σ^t have that Z_b Assumption 1, setting

Suppose now that for some J and hence

monotonically increasing in the sense that for any $\sigma^t = (b^t, R^t)$ be such that the values of $R^t = R^t(J^t, \mathcal{E}^t)$ and $b^t = b^t(J^t, \mathcal{E}^t) \in [0, 1]$ solve

$$\max_{R^t \in \{V, U\}, b^t \in [0, 1]} (1 - \delta) \hat{\Pi}(\mathcal{E}^t, R^t) + \delta \{ Z^*(J^t, b^t, R^t, \mathcal{E}^t), \rho \}$$

(A.1)

Since none of the functional forms in (A.1) depends on t, the conclusion now follows immediately. ■

Remark A.1: [See Remark 2 in the text] Recall that from this point on we focus exclusively on Case Law regime equilibria that satisfy the stationarity property of Remark 2.

Moreover, from now on we abuse our notation slightly and denote by σ^* the equilibrium strategy of each and every Case Law Court so that $\sigma^* = \sigma^{**}$ for every $t = 1, 2, \ldots$. The two components of σ^* are denoted by R^* and b^* respectively, so that $\sigma^* = (R^*, b^*)$ with $R^* = R^{**}$ and $b^* = b^{**}$ for every $t = 1, 2, \ldots$.

Lemma A.2: Let σ^* be an equilibrium for the Case Law regime. Then expected welfare is weakly monotonically increasing in the sense that for any $J \in [0, 1]^4$ and any $\mathcal{E} \in \{F, M\}$ we have that

$$Z^*(J, b^*(J, \mathcal{E}), R^*(J, \mathcal{E}), \rho) \geq Z^*(J, \rho)$$

(A.2)

Proof: From (A.1) in the proof of Remark 2 we know that for every $J \in [0, 1]^4$ and any $\mathcal{E} \in \{F, M\}$ the values $b = b^*(J, \mathcal{E})$ and $R = R^*(J, \mathcal{E})$ must solve

$$\max_{R \in \{V, U\}, b \in [0, 1]} (1 - \delta) \hat{\Pi}(\mathcal{E}, R) + \delta \{ Z^*(J, b, R, \mathcal{E}), \rho \}$$

(A.3)

Suppose now that for some J and some \mathcal{E} inequality (A.2) were violated. Then, using (ii) of Assumption 1, setting $b = 0$ yields

$$Z^*(J, \rho) = Z^*(J, 0, R^*(J, \mathcal{E}), \rho) > Z^*(J, 0, R^*(J, \mathcal{E}), \rho)$$

(A.4)

and hence

$$\hat{\Pi}(\mathcal{E}, R^*(J, \mathcal{E})) + \delta \{ Z^*(J, 0, R^*(J, \mathcal{E}), \rho) \} > \hat{\Pi}(\mathcal{E}, R^*(J, \mathcal{E})) + \delta \{ Z^*(J, b^*(J, \mathcal{E}), R^*(J, \mathcal{E}), \rho) \}$$

(A.5)
which contradicts the fact that $b^*(J,\varepsilon)$ and $R^*(J,\varepsilon)$ must solve (A.3). ■

Lemma A.3: Let σ^* be an equilibrium for the Case Law regime. Suppose that for some $J \in [0,1]^4$ and $\varepsilon \in \{F,M\}$ we have that

$$R^*(J,\varepsilon) = V$$

(A.6)

then it must be that\(^{28}\)

$$Z^*(J, b^*(J,\varepsilon), R^*(J,\varepsilon), \rho) - Z^*(J,\rho) \geq \frac{1 - \delta}{\delta} \left[\hat{\Pi}(\varepsilon,U) - \hat{\Pi}(\varepsilon,V) \right]$$

(A.7)

Proof: From (A.1) in the proof of Remark 2 we know that for every $J \in [0,1]^4$ and any $\varepsilon \in \{F,M\}$ the values $b = b^*(J,\varepsilon)$ and $R = R^*(J,\varepsilon)$ must solve

$$\max_{R \in \{V,U\}, b \in [0,1]} \left[(1 - \delta) \hat{\Pi}(\varepsilon,R) + \delta \left\{ Z^*(J,b,R,\varepsilon,\rho) \right\} \right]$$

(A.8)

Since (A.6) must hold it must then be that

$$(1 - \delta)\hat{\Pi}(\varepsilon,V) + \delta \left\{ Z^*(J,b^*(J,\varepsilon),R^*(J,\varepsilon),\rho) \right\} \geq (1 - \delta)\hat{\Pi}(\varepsilon,R^*(J,\varepsilon)) + \delta \left\{ Z^*(J,0,R^*(J,\varepsilon),\rho) \right\}$$

(A.9)

Using (ii) of Assumption 1 we know that $Z^*(J,0,R^*(J,\varepsilon),\rho) = Z^*(J,\rho)$. Hence (A.9) directly implies (A.7). ■

Proof of Proposition 2: Let m be the smallest integer that satisfies\(^{29}\)

$$m \geq \max_{\varepsilon \in \{F,M\}, R \in \{V,U\}} \frac{\Pi(\varepsilon,R) - \min_{\varepsilon \in \{F,M\}, R \in \{V,U\}} \Pi(\varepsilon,R)}{\min_{\varepsilon \in \{F,M\}} \frac{1 - \delta}{\delta} \left[\hat{\Pi}(\varepsilon,U) - \hat{\Pi}(\varepsilon,V) \right]} + 1$$

(A.10)

Notice next that $Z^*(J,\rho)$ is obviously bounded above by $\max_{\varepsilon \in \{F,M\}, R \in \{V,U\}} \Pi(\varepsilon,R)$ and below by $\min_{\varepsilon \in \{F,M\}, R \in \{V,U\}} \Pi(\varepsilon,R)$.

Suppose now that the proposition were false and therefore that along some realized history $h^t = (J^0,\ldots,J^{t-1})$ the Case Law Court were given discretion and ruled V for m or more times. Then

\(^{28}\)Recall that with the particular number at hand (see (5)) we have that $\hat{\Pi}(F,U) - \hat{\Pi}(F,V) = \hat{\Pi}(M,U) - \hat{\Pi}(M,V) = 14$.

\(^{29}\)With the actual numbers in (3) and (5) the numerator of (A.10) equals 30, and the denominator equals $14(1 - \delta)/\delta$.
using Lemmas A.2 and A.3 we must have that
\[
Z^*(J^{\ell-1}, \rho) \geq m \min_{\xi \in \{\mathcal{F}, \mathcal{M}\}} \frac{1 - \delta}{\delta} \left[\tilde{\Pi}(\xi, \mathcal{U}) - \tilde{\Pi}(\xi, \mathcal{V}) \right] + \min_{\xi \in \{\mathcal{F}, \mathcal{M}\}, \mathcal{R} \in \{\mathcal{V}, \mathcal{U}\}} \Pi(\xi, \mathcal{R}) \quad (A.11)
\]

However, using (A.10), it is immediate that the right-hand side of (A.11) is greater than \(\max_{\xi \in \{\mathcal{F}, \mathcal{M}\}, \mathcal{R} \in \{\mathcal{V}, \mathcal{U}\}} \Pi(\xi, \mathcal{R})\). Since the latter is an upper bound for \(Z^*(J, \rho)\), this is a contradiction and hence it is enough to establish the claim.

Proof of Proposition 3: Fix an initial body of precedents \(J^0\) and a \(\delta \in (0, 1)\). Fix a \(\rho \in (0, 1)\), and for every \(\rho \in [\rho, 1]\) fix an equilibrium (given \(J^0\)) for the Case Law regime \(\sigma^*(\rho)\).

Let \(m\) be as in Proposition 2. Consider a possible realization of uncertainty \(E^{m-1}_{t=0}, (E^t_{\mathcal{F}})_{t=0}^{m-1}\) and \((\mathcal{J}_t^m)_{t=0}^{m-1}\) with the following properties. First \(E^t = \mathcal{M}\) for every \(t = 0, \ldots, m - 1\). Second, if we let \(h^m(\rho) = (\mathcal{J}^0, \mathcal{J}^1(\rho), \ldots, \mathcal{J}^{m-1}(\rho))\) be the associated realized history in the \(\sigma^*(\rho)\) equilibrium, then \(\mathcal{E}_M = (v^M_\rho, u^M_\rho)\) for every \(t = 0, \ldots, m - 1\) and for every \(\rho \in [\rho, 1]\). In other words, along the realized path, the environment is \(\mathcal{M}\) and the Case Law Court has discretion in every period up to and including \(t = m - 1\), for every equilibrium \(\sigma^*(\rho)\) with \(\rho \in [\rho, 1]\).

Next, we argue that this path has positive probability, bounded away from zero, provided that \(\rho \in [\rho, 1]\). To see this, observe first that the probability that the environment is \(\mathcal{M}\) in periods \(t = 0, \ldots, m - 1\) is given by \(\rho^m\). The probability that the Case Law Court has discretion in every period in \(\sigma^*(\rho)\) is \(d(m, \rho) = \prod_{t=0}^{m-1} d^t_\mathcal{M}(\rho)\), where \(d^t_\mathcal{M}(\rho)\) is given by the realized history \(h^m(\rho)\). Therefore, if we let \(d(m) = \inf_{\rho \in [\rho, 1]} d(m, \rho)\) the probability of the entire path with the requisite properties is bounded below by \(\rho^m d(m)\). Trivially, the first term of this product is bounded away from zero, provided that \(\rho \in [\rho, 1]\). To see that \(d(m) > 0\), notice that since \(\mathcal{J}^0\) by assumption has \(d^t_\mathcal{M} > 0\), and \(m\) is finite, then using (i) of Assumption 1 we have that for some \(d > 0\) it must be that \(d^t_\mathcal{M}(\rho) > d\) for every \(t = 0, \ldots, m - 1\) and every \(\rho \in [\rho, 1]\). It follows that the entire path with the requisite properties must have probability, call it \(\xi\), that is no smaller than \(\rho^m d(m) > 0\).

Next, we consider two cases. Fix a \(\rho \in [\rho, 1]\). Along the positive probability path we have identified, in the equilibrium \(\sigma^*(\rho)\), either all the Case Law Courts’ rulings are \(\mathcal{V}\) or they are not. Suppose first that all the rulings are \(\mathcal{V}\). Then by Proposition 2 it must be that in the \(\sigma^*(\rho)\) equilibrium we have \(\mathcal{R}^*(\mathcal{J}^{m-1}(\rho), \mathcal{M}) = \mathcal{U}\). If one or more rulings along the path are different from \(\mathcal{V}\) then clearly in the \(\sigma^*(\rho)\) we have \(\mathcal{R}^*(\mathcal{J}^t(\rho), \mathcal{M}) = \mathcal{U}\) for some \(t = 0, \ldots, m - 1\).

We can now conclude that in any \(\sigma^*(\rho)\) equilibrium with \(\rho \in [\rho, 1]\), with probability \(\xi > 0\), some Case Law Court at time \(t \leq m - 1\) issues a ruling of \(\mathcal{U}\) in environment \(\mathcal{M}\).

Using (3), it is immediate that the welfare of any Case Law Court equilibrium cannot go above that generated by a sequence of rulings that are \(\mathcal{U}\) whenever the environment in \(\mathcal{F}\) and \(\mathcal{V}\) whenever
the environment is \mathcal{M}. Therefore, we can conclude that in any $\sigma^*(\rho)$ equilibrium with $\rho \in [\rho^*, 1]$ the welfare of the Case Law regime is bounded above as follows:\(^{30}\)

$$
W_C(\rho) \leq (1 - \delta) \left\{ \sum_{t=0}^{m-2} \delta^t [(1 - \rho)\Pi(F, U) + \rho\Pi(M, V)] + \delta^{m-1} [(1 - \rho)\Pi(F, U) + (\rho - \xi)\Pi(M, V) + \xi\Pi(M, U)] + \sum_{t=m}^{\infty} \delta^t [(1 - \rho)\Pi(F, U) + \rho\Pi(M, V)] \right\} \tag{A.12}
$$

Now consider any $\rho > \max\{\rho, \rho_S^*\}$ where ρ_S^* is as in Proposition 1. Using Proposition 1 the equilibrium welfare $W_S(\rho)$ of the Statute Law Regime is

$$
W_S(\rho) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t [(1 - \rho)\Pi(F, V) + \rho\Pi(M, V)] \tag{A.13}
$$

Using (A.12) and (A.13) it is a matter of straightforward algebra to then show that if we set\(^{31}\)

$$
\rho_C^* = \max \left\{ 1 - \frac{(1 - \delta)\delta^{m-1}\xi [\Pi(M, V) - \Pi(M, U)]}{\Pi(F, U) - \Pi(F, V)}, \rho, \rho_S^* \right\} \in (0, 1) \tag{A.14}
$$

then for every $\rho > \rho_C^*$ it is the case that $W_S(\rho) > W_C(\rho)$, as required. \(\blacksquare\)

References

\(^{30}\) The first sum of terms in (A.12) is understood to be zero if $m = 1$.

\(^{31}\) Notice that the first term in the curly brackets in (A.14) in general depends on \mathcal{J}^0. This is because ξ depends on \mathcal{J}^0. With the actual numbers in (3) the ratio $[\Pi(M, V) - \Pi(M, U)]/[\Pi(F, U) - \Pi(F, V)]$ equals 3.

