Confidence and the Transmission of Government Spending Shocks*

Rüdiger Bachmann
University of Michigan and NBER, CESifo and ifo

Eric R. Sims
University of Notre Dame and NBER

January 10, 2011

Abstract

There seems to be a widespread belief among economists, policy-makers, and members of the media that the “confidence” of households and firms is a critical component of the transmission of fiscal policy shocks into economic activity. In this paper we take this proposition to the data. We use standard restrictions from the literature to identify government spending shocks in VARs augmented to include empirical measures of consumer or business confidence. We also estimate non-linear specifications to allow for differential impacts of government spending in normal times versus recessions. Our first result is that in normal times confidence does not react significantly in response to unexpected increases in government spending; during recessions it rises. In addition, the spending multiplier is much larger in recessions than in normal times. We then construct counterfactual impulse responses in which the response of confidence to government spending shocks is “shut down”. Comparing the actual and counterfactual responses of output allows us to determine the importance of confidence as a transmission mechanism of policy. We find as our second result that confidence is irrelevant in the transmission of government spending shocks to output in normal times, but is very important during downturns. Third, we provide some evidence that this is because spending shocks during downturns predict future productivity rises through persistent increases in government investment relative to government consumption.

*Contact information: rudib@umich.edu and esims1@nd.edu. We thank Gernot Müller for his discussion. We are grateful to seminar/conference participants at the ifo conference on “Macroeconomics and Survey Data”, Notre Dame, Rochester, the Philadelphia FED, and the ASSA/AEA 2011 annual meeting for helpful comments and suggestions. Any remaining errors are our own. Keywords: confidence, fiscal policy, productivity. JEL Codes: E620, E490, H300.
“But the hope that monetary and fiscal policies would prevent continued weakness by boosting consumer confidence was derailed by the recent report that consumer confidence in January collapsed to the lowest level since 1992.” – Martin Feldstein, Wall Street Journal, February 20, 2008

“Confidence matters independently of fundamentals!” – Roger Farmer, May 29, 2010

1 Introduction

A widespread belief amongst economists, policy-makers, and members of the news media is that the “confidence” of households and firms is a critical component of the transmission of policy shocks into economic activity. A sampling of quotes from economists and policy-makers with wide-ranging economic and political philosophies attests to this fact (see the Appendix section A.1). A large literature studies the effects of fiscal policy shocks on the real economy, while another literature examines the effects of confidence in the economy. To our knowledge no study bridges these two literatures and explicitly examines the relationship between confidence and the transmission of policy shocks. This paper fills that void.

Barsky and Sims (2010a) study the role of confidence in economic fluctuations. They show that surprise changes in consumer confidence are associated with long-lasting movements in macroeconomic aggregates. They argue that this relationship between confidence and the economy obtains because empirical measures of confidence are reflective of changes in future economic fundamentals, and in particular productivity. In contrast, they argue that autonomous fluctuations in confidence unrelated to fundamentals – i.e. what one might call “animal spirits” – are unlikely to be an important source of economic fluctuations. Their analysis is silent on whether the systematic behavior of confidence is important in the propagation of other shocks. A second contribution of this paper is to address this question.

In light of the events related to the so-called Great Recession, there has been renewed interest among researchers in studying fiscal policy. In standard neoclassical or New Keynesian settings, government spending multipliers are typically not very large. Nevertheless, more recently the view has emerged that spending multipliers might be much larger – and the welfare gains from spending positive – during periods of economic slack; some recent theoretical (Christiano, Eichenbaum, and Rebelo, 2009) and empirical (Auerbach and Gorodnichenko, 2010) work provides evidence in support of this belief. As the large sampling of quotes previously alluded to suggests, there is also apparently a widespread belief that part of the transmission of fiscal stimulus into economic activity is the act of restoring or increasing confidence.
Given that there is no off-the-shelf workhorse model for confidence or even a widely accepted channel by which confidence might matter in the transmission of fiscal policy shocks, we study this question in the context of a structural vector autoregression (VAR), which uses a minimum of theoretical restrictions to identify government spending shocks and their effects on the macroeconomy. As David Laibson recently wrote, “If a sample of macroeconomists were forced to write down a formal model of animal spirits, most wouldn’t know where to start and the rest would produce models that had little in common” (Fuster, Laibson, and Mendel, 2010).

We estimate VARs with a measure of government spending, an empirical measure of confidence (either from consumers or businesses), and macroeconomic aggregates of interest. The widely accepted identifying restriction to isolate government spending shocks is that spending shocks impact the economy immediately, whereas government spending only reacts to other shocks with a delay (e.g. Blanchard and Perotti, 2002; Ramey, 2010; Rossi and Zubairy, 2010). This amounts to a recursive identification with government spending ordered first. We implement this identifying assumption throughout the paper. This allows confidence to directly and immediately respond to surprise changes in government spending.

So as to examine the role of confidence in the transmission of spending shocks, we construct counterfactual impulse responses in which the endogenous response of confidence to government spending is “shut down”. This methodology has been used previously in different contexts, particularly to study the role of the systematic component of monetary policy (e.g. Sims and Zha, 2006; Bernanke, Gertler, and Watson, 1998; and Kilian and Lewis, 2010). The construction of the counterfactuals requires creating a hypothetical sequence of some other structural shock in the system so as to zero out the impulse response of confidence to spending. We use the innovation in confidence ordered immediately after spending in a recursive identification to construct the counterfactuals.

In conventional linear specifications of the underlying VARs we find little evidence to support the notion that confidence is an important part of the transmission of spending shocks into economic activity. In a variety of different specifications, we find that the estimated spending multipliers are generally in the neighborhood of unity, in accordance with the literature (see Hall, 2009, for an overview). Confidence typically declines slightly on impact in response to a spending shock and rises after a few quarters, though this response is economically small and statistically insignificant. The counterfactual impulse responses of macroeconomic aggregates in which the response of confidence to a spending shock is shut down are very similar to the unrestricted responses. These findings are robust to a variety of different specifications, including ones in which we directly control for anticipated changes in government spending (Ramey, 2010). In short, confidence does not appear to be a part
of the transmission of fiscal shocks in normal times.

Given the recent theoretical and empirical work on government spending shocks having differential effects during times of economic slack, we also estimate non-linear specifications of the VAR. Following Auerbach and Gorodnichenko (2010), we allow the parameters of the VAR to differ during periods in which economic growth has been weak for an extended period of time. Similar to them, we find that spending multipliers are significantly larger during recessions than in normal times. In particular, our estimated spending multipliers are in the neighborhood of 3 during recessions. Also, we find that confidence significantly rises on impact following a positive spending shock in a recession, as opposed to falling in the linear specification.

These findings suggest that confidence may be an important part of the transmission of spending shocks during periods of economic distress. Our counterfactual analysis applied to the non-linear VAR specifications lends credence to such a conclusion; there we find that shutting down the response of confidence to a spending shock renders the output response to a spending shock much smaller. Rather than finding multipliers in the range of 3, the estimated counterfactual spending multipliers are much closer to those estimated in the linear case (i.e. near unity).

It is important to stress that in the estimated impulse responses to a spending shock during recessions the response of output is small on impact, and is only large after a number of quarters. Indeed, the response of output looks similar to that following a “news shock” about future productivity (Beaudry and Portier, 2006; Barsky and Sims, 2010b). To investigate this possibility further, we include in the VAR a measure of labor productivity (output per hour). We show that, in a recession, a positive government spending shock is associated with a prolonged and permanent increase in productivity. We then show that constructing counterfactual responses in which the confidence response to a spending shock is shut down renders the responses of both output and productivity to a spending shock similar to what obtains in the linear case. This suggests that it may be the effect of spending on future productivity that accounts for the output response to a fiscal shock in a recession.

To test this hypothesis, we then construct a “synthetic” measure of confidence that is, by construction, devoid of information about future productivity. Constructing counterfactual responses in which the response of this synthetic confidence series is shut down has no impact on the responses of output and productivity to a spending shock. This together with the small impact response suggests that it is indeed the effect on future productivity that drives the different impulse response of output to a spending shock in a recession, not the increase in confidence per se. We provide some further evidence that the composition of government spending following a spending shock is very different in recessions as opposed to normal...
times. In particular, we show that there is a persistent increase in the amount of government investment relative to consumption following a spending shock in a recession; this is not the case in normal times. This relative increase in government investment spending leads to increases in future productivity. The systematic response of confidence merely reflects this change in expected future productivity.

The remainder of the paper is organized as follows. Section 2 provides some mechanisms for why confidence might matter for the transmission of spending shocks. Section 3 describes our data and our VAR and counterfactual methodology. It also provides simulation evidence that shows the suitability of our empirical approach. Section 4 presents our main results. Section 5 discusses why confidence matters for the transmission of spending shocks during periods of recession. The final section concludes.

2 Why Might Confidence Matter?

An old idea (Keynes, 1936) that has gained recent attention (Ackerlof and Shiller, 2008) is that “animal spirits” are central to understanding economic fluctuations. While intriguing, this idea lacks a widely accepted theoretical structure, and has met with limited empirical success (Barsky and Sims, 2010a). Loosely speaking, the idea is that aggregate sentiment determines aggregate spending, which in turn determines aggregate output and employment. Fiscal or monetary shocks from the government might signal a commitment to aggregate stability, thereby raising sentiment, stimulating demand, and leading to economic expansion. This idea is related to the “sunspot” framework popularized by Farmer (1998) and others, which holds that there are, at any time, multiple aggregate equilibria. Stimulating sentiment could cause the economy to jump from a “bad” equilibrium to a “good” one.

Another related possibility includes a role for informational frictions and strategic complementarities in a world in which households fail to perfectly observe aggregate fundamentals and use observed variables (like aggregate output) to form perceptions of the true fundamentals (see Lorenzoni, 2009). Following a recession there might be induced sluggishness – the true fundamentals might have improved but beliefs about the fundamentals are slow to catch up, hence putting a brake on the recovery. By engaging in expansionary fiscal or monetary policies, the government may be able to convince agents that fundamentals have improved, thereby facilitating recovery.

Another possibility is that empirically measured confidence is a measure of a time-varying discount factor – periods of high confidence are periods in which households do not discount the future by much, and thus are relatively more willing to spend. If policies can lead to an increase in confidence, they might therefore stimulate demand over and above what would
happen under normal transmission channels.

And finally there is the view in Barsky and Sims (2010a) that autonomous innovations to confidence merely reflect autonomous news about future fundamentals. This means that fiscal policy, for example through investment in infrastructure or R & D subsidies, might change agents’ views about these future fundamentals and thus generate important systematic movements in confidence. We provide some evidence for this view in this paper.

3 Data and Methodology

In this section we describe the data used in our analysis and lay out our empirical methodology. Subsection 3.3 examines the suitability of our empirical methodology in the context of data generated from fully specified dynamic general equilibrium models.

3.1 Data

We begin with a brief analysis of our data, all of which is from publicly available sources. Real GDP and its components are taken from the BEA and are quarterly in frequency. We measure real government spending as the sum of government consumption and gross investment. We express all aggregate quantity series in per capita terms, dividing by the civilian non-institutionalized population aged 16 and over.

We draw on two sources for data on subjective measures of confidence – one for households and one for businesses. The first is the Survey of Consumers. Conducted by the Survey Research Center at the University of Michigan, the survey polls a nationally representative sample of households on a variety of questions concerning personal and aggregate economic conditions. Most answers are tabulated into qualitative categories – “good”, “neutral”, and “bad”. Scores for each question are then tabulated as the percentage of good responses minus the percentage of bad responses. We focus on the Index of Consumer Expectations, which is an average of the scores for three different forward-looking survey questions – one concerning aggregate expectations over the next year, another aggregate expectations over the next five years, and the other concerning personal financial conditions over the next year. These data are available beginning in the first quarter of 1960 at a quarterly frequency.

We obtain survey data on business confidence from the Conference Board’s CEO Confidence Survey. The Conference Boards surveys CEOs in a variety of industries on current and future economic conditions. As with the Michigan Survey, answers are tabulated into qualitative categories – “very good”, “good”, “neutral”, “bad”, and “very bad”. These categories get a score of 100, 75, 50, 25, and 0, respectively. The aggregate confidence score is
simply the average across the respondents. Data from the survey are available at a quarterly frequency beginning in 1976.

Figures 1 and 2 plot each confidence series across time. The shaded gray areas are recessions as dated by the National Bureau of Economic Research. Both series undergo repeated dramatic swings and exhibit some of the properties that one might expect. For example, confidence is low during recessions and high during booms. The CEO confidence data appear to lead the business cycle more than do the confidence data.

3.2 Methodology

Much of the empirical literature on the identification of government spending shocks is (or can be) cast in a vector autoregression framework. Let g_t be a time series measure of government spending, and let x_t be $k \times 1$ vector of other time series of interest (e.g. output, consumption, revenue, etc.). With $Y_t = [g_t \ x_t]'$, the VAR can be written:

$$A(L)Y_t = U_t$$

$$E(U_t U_t') = \Omega$$

$A(L)$ is matrix lag polynomial of order p, i.e. $A(L) = I - A_1 L - A_2 L^2 - ... A_p L^p$. U_t is a vector of innovations of conformable size, with variance-covariance matrix Ω. It is necessary to orthogonalize the innovations in some way in order to be able to give them a structural interpretation. Following Blanchard and Perotti (2002), most of the literature identifies government spending shocks by ordering g_t first in a Choleski decomposition. We will use this identifying restriction throughout the paper. It assumes that government spending shocks affect the economy immediately, whereas government spending reacts to other shocks only with a delay. For the purposes of identifying just the dynamic effects of government spending shocks, it is not necessary to take a stand on the ordering of the other variables.

Ramey (2010) emphasizes that VAR shocks to government spending are actually predictable, which can render impulse response functions biased. She proposes a measure of anticipated government spending, g^a_t, that is equal to the present discounted value of future spending, based on a subjective reading of the narrative record. In order to accommodate these anticipation effects, the system to be estimated can be modified to be $Y_t = [g^a_t \ g_t \ x_t]'$. The unanticipated government spending shock is then identified as the innovation in g_t ordered second (i.e. after g^a_t). Although we abstract from anticipated government spending in the paper, we show in Appendix section A.2 that our results are very robust to directly accounting for spending news.
So as to study the role of confidence in the transmission of spending shocks, we incorporate an empirical measure of confidence into the VAR. Letting confidence be $conf_t$, the system can be written: $Y_t = [g_t \ conft x_t]'$. Government spending is again ordered first. The importance of confidence in the transmission of spending shocks can be measured by constructing counterfactual impulse responses in which the systematic response of confidence to spending shocks is “shut down”. The idea of constructing counterfactual impulse responses in a VAR context was first proposed by Sims and Zha (2006) to determine how important the systematic component of monetary policy (i.e. the endogenous response of the funds rate) is for the evolution of aggregate variables. Bernanke, Gertler, and Watson (1998) use a similar approach to examine the importance of monetary policy in the transmission of oil price shocks. The basic idea is to construct a hypothetical time series of some other structural shock in the system so as to “zero out” the impulse response of confidence to the spending shock, and then to look at how different the other impulse responses are relative to the baseline case.

While the ordering of confidence relative to the other variables in x_t does not matter for looking at the impulse responses to spending shocks, it does matter for the construction of counterfactuals. This is because we must use an orthogonalized shock from the system in order to shut down the confidence response to spending shocks. Following Barsky and Sims (2010a), we order confidence before the other aggregate variables in x_t, meaning that confidence shocks affect all variables in x_t immediately, and use this shock to construct the counterfactuals. As noted by Barsky and Sims (2010a), the confidence innovation so ordered in a Choleski decomposition may not have a purely structural interpretation. Nevertheless, this approach gives confidence its “best chance” of being important in the transmission of spending shocks.

Formally, let ε_t be a vector of orthogonal shocks such that $U_t = B\varepsilon_t$. Under the recursive identification, B is lower triangular and satisfies $BB' = \Omega$ after normalizing the variance-covariance matrix of structural shocks to be an identity matrix. The impulse response function, which is the same as the structural moving average representation, is:

$$Y_t = C(L)\varepsilon_t$$

$$C(L) = A(L)^{-1}B$$

$C_{i,j}(h)$ denotes the impulse response of variable i at horizon h to a unit shock j at time t. Let government spending be indexed by $i = 1$ and confidence by $i = 2$. The impulse response of confidence to a spending shock is then $C_{2,1}(h)$. We need to come up with a sequence of confidence shocks (i.e. $\varepsilon_{2,t+h}$) so as to zero this response out at all horizons. The required
sequence of shocks can be computed recursively as follows:

\[
C_{2,1}(h) = 0 \quad \forall \ h \geq 0 \\
\Leftrightarrow \\
\varepsilon_{2,t} = \frac{-C_{2,1}(0)}{C_{2,2}(0)}
\]

\[
\varepsilon_{2,t+h} = \frac{-C_{2,1}(h) - \sum_{j=1}^{h} C_{2,2}(h - j)\varepsilon_{t+h-j}}{C_{2,2}(0)} \quad \forall \ h \geq 1
\]

Given the time series of counterfactual confidence shocks, the counterfactual impulse responses of the full system, \(\tilde{C}_{i,1}(h) \) to the government spending shock can be written as:

\[
\tilde{C}_{i,1}(h) = C_{i,1}(h) + \sum_{j=0}^{h} C_{i,2}(h - j)\varepsilon_{2,t+j} \quad \forall \ h \geq 0
\]

Traditional Keynesian thinking and some recent theoretical work (Christiano, Eichenbaum, and Rebelo, 2009, and Woodford, 2010) both suggest that fiscal policy may be more potent when the economy is experiencing significant slack. So as to allow for this possibility, we also consider a non-linear VAR specification similar to Auerbach and Gorodnichenko (2010). Following them, let \(z_t \) be a seven quarter moving average of real GDP growth, normalized to have mean zero and re-scaled to have unit variance. This series can be interpreted as a measure of the current state of the economy. We construct the following function:

\[
f(z_t) = \frac{\exp(-\gamma z_t)}{1 + \exp(-\gamma z_t)} \quad \gamma > 0
\]

The function \(f(z_t) \) is thus bound between 0 and 1. \(f(z_t) \approx 1 \) means that \(z_t \) is very negative, while \(f(z_t) \approx 0 \) means that \(z_t \) is very positive. As in Auerbach and Gorodnichenko (2010), we calibrate \(\gamma = 1.5 \) and define a “recession” as a period in which \(f(z_t) > 0.8 \). This lines up well with NBER-defined recessions, as shown in Figure 3, which plots \(f(z_t) \) against time, with the shaded gray regions denoting NBER defined recessions.

Our non-linear system can be written (again with \(Y_t = [g_t \ con_{ft} \ x_t]^\prime \)):

\[
Y_t = A_1(L)Y_{t-1} + A_2(L)Y_{t-1}z_{t-1} + A_3(L)Y_{t-1}z_{t-1}^2 + U_t
\]
\[E(U_t U_t') = \Omega_n \quad \text{if } f(z_t) \leq 0.8 \]
\[E(U_t U_t') = \Omega_r \quad \text{if } f(z_t) > 0.8 \]

In words, \(Y_t \) follows an autoregressive process depending on its own lags, its own lags interacted with \(z_t \), and its own lags interacted with \(z_t^2 \). These interaction terms allow the AR coefficients to vary with the state of the economy. We assume that the innovations, \(U_t \) have a conditionally heteroskedastic variance-covariance matrix. In particular, we assume that the variance-covariance matrix can take on two different values: one in normal times, and one in recessions. The above specification nests the linear case if \(\Omega_n = \Omega_r \) and \(A_2(L) = A_3(L) = 0 \). The ordering of the variables in the Choleski identification and the construction of counterfactuals is the same as in the linear case. A complication is that impulse responses are now state dependent, and there is feedback between the impulse responses and the level of \(z_t \). We assume that \(E_t z_{t+j} = \rho^j z_t \), where \(\rho \) is estimated from a univariate autoregression of \(z_t \). To deal with the state dependence, when looking at impulse responses in a recession, we fix \(z_t \) equal to its sample average conditional on \(f(z_t) > 0.8 \).

3.3 Simulation Results

We now briefly present some model-based evidence that our VAR and counterfactual methodologies are appropriate and likely to work well in practice. We study a simple DSGE model with government spending shocks. We consider two parameterizations: one in which there is a unique equilibrium and confidence merely reflects fundamentals, and another in which there are multiple equilibria and confidence pins down the particular equilibrium.

Households seek to maximize the present discounted value of lifetime utility from consumption and work:

\[
\sum_{j=0}^{\infty} \beta^j E_t \left(\ln c_{t+j} - \theta n_{t+j} \right)
\]

Following Thomas (2004), firms produce output according to the following production technology:

\[
y_t = z_t k_t^a n_t^b \left(\bar{k}_t^{\alpha \gamma} \bar{n}_t^{\beta \gamma} \right)
\]
\(\bar{k}_t \) and \(\bar{n}_t \) are the economy-wide averages of the capital stock and labor input. If \(\gamma > 0 \), then there is a production externality and there may be multiple equilibria. If \(\gamma = 0 \) and \(b = 1 - a \), then the model reduces to the standard real business cycle model.

Aggregate TFP and government spending obey AR(1) processes in the logs:

\[
\begin{align*}
\ln z_t &= \rho_z \ln z_{t-1} + \epsilon_{a,t} \\
\ln g_t &= (1 - \rho_g) \ln g^* + \rho_g \ln g_{t-1} + \epsilon_{g,t}
\end{align*}
\]

The accounting identity is \(y_t = c_t + k_t + 1 - (1 - \delta)k_t + g_t \). We incorporate “confidence” into the model in the following way: we assume that it follows a univariate AR(1) process with an innovation equal to a linear combination of the two structural disturbances and its own “noise” term:

\[
\text{con}_t = \rho_c \text{con}_{t-1} + \phi \epsilon_{g,t} + \epsilon_{c,t}
\]

We fix the following parameter values: \(\rho_g = 0.97 \), \(\rho_z = 0.95 \), \(\beta = 0.989 \), \(\delta = 0.25 \), \(\rho_c = 0.91 \), and \(\phi = 0.5 \). We set \(g^* \) such that government spending is 20 percent of output in steady state. We set the standard deviation of the government spending shock to 0.01, the standard deviation of the TFP shock to 0.007, and the standard deviation of the confidence noise shock to 0.07, in accordance with the data. We consider two cases for the remaining parameters. In one, \(b = 1 - a = 0.36 \) and \(\gamma = 0 \). In this case, confidence is reflective of fundamentals but otherwise has no impact on the other variables of the model. In the other case, we set \(a = 0.23 \), \(b = 0.7 \), and \(\gamma = 0.7234 \). These parameter values give rise to multiple equilibria. We assume that the level of confidence pins down the economy’s equilibrium. In practice, this means that there is an error in the dynamic Euler equation equal to the innovation in measured confidence. This means that confidence is both reflective of economic fundamentals and has an important causal role to play in the evolution of the endogenous variables of the model. It also changes the nature of the response to government spending – in particular, because increases in government spending by construction raise confidence, they cause the economy to coordinate on a “better” equilibrium, and output expands by significantly more than it would in the absence of the multiplicity of equilibria.

We conduct the following experiment to examine the suitability of our empirical approach. We simulate data from both cases of the model, drawing shocks from normal distributions. Then for each simulated data set we estimate a three variable VAR with government spending, confidence, and output. We estimate the VAR in the levels of the variables with four lags. We orthogonalize the innovations in that order using a Choleski decomposition. This
ordering is consistent with the implications of the structural model and is the same empirical specification which we use in Section 4. We simulate 500 different data sets with 200 observations each. For each simulated data set we compute both unrestricted and counterfactual impulse responses to a government spending shock and then we average these over the simulations.

Figure 4 shows some results for the case with a unique equilibrium. The solid dark line shows the theoretical impulse response to a government spending shock and the dashed line shows the average estimated impulse responses across the simulations. The dotted line shows the average estimated counterfactual impulse responses in which confidence is held fixed. We observe that the estimated VAR does a good job at estimating the true impulse responses, though there are slight downward biases in the responses at longer horizons due to downward biased estimates of autoregressive roots. The counterfactual responses of both government spending and output lie on top of their estimates from the unrestricted case. This is to be expected, since in this model confidence has no effect on either government spending or output.

Figure 5 shows results from the case with multiple equilibria. The labeling of the responses is the same as in Figure 4. Once again, we observe that the estimated VAR does a good job in capturing the model’s impulse responses. There is an important difference here relative to Figure 4, however. In the counterfactual case, the response of output to government spending is essentially zero at all horizons when the response of confidence to spending is shut down. This is precisely what would happen in the model, since confidence pins down the equilibrium.

In short, our simulation results suggest that our VAR approach is capable of doing a good job at identifying impulse responses to government spending shocks, and that our counterfactual approach is capable of addressing the question of whether confidence is an important part of the transmission mechanism of spending shocks.

4 Results

For our benchmark estimation, we estimate a system with the log real government spending, a measure of confidence, and log real GDP. In the notation of the previous section, $x_t = y_t$. Including additional variables in x_t does not affect the main results; we prefer to keep x_t small because our non-linear specifications place large burdens on the data.\(^1\) We estimate the

\(^1\)In the benchmark system there are $p \times q$ autoregressive parameters to estimate, where p is the lag length and q is the number of variables. In the non-linear estimation there are $3 \times p \times q$ parameters to estimate, which grows quickly with q.\]
system in the levels of the variables with four lags. Four lags is common with quarterly data and is consistent with a number of lag order selection criteria. Government spending and output are likely cointegrated; estimation in levels preserves any cointegrating relationship and will therefore yield consistent estimates of impulse response functions. The alternative of estimating vector error correction models (VECMs) yields similar results. Inference is conducted via Kilian’s (1998) bias-corrected bootstrap after bootstrap.

Figure 6 shows impulse responses using the consumer confidence data, which go back to 1960. The solid lines are the estimated responses to a one standard deviation government spending shock. The shaded gray regions are the 90 percent confidence bands. Government spending follows a hump-shaped response but is nevertheless fairly persistent. Output rises by about 0.2 percent on impact before reverting back to its pre-shock value. Confidence actually falls on impact before rising slightly a few quarters later. This response is never significantly different from zero in the statistical sense.

The dashed lines in the figure show the counterfactual impulse responses when the response of confidence is shut down, where we use confidence innovations ordered second in a Choleski decomposition to construct the counterfactuals. The counterfactual response of output is indeed lower when the systematic movement of confidence is shut down, suggesting a positive role of confidence in the transmission of fiscal policy. However, the differences in the impulse responses are economically small and statistically insignificant. This is not surprising given that confidence does not respond much to the government spending shock in the first place.

Figure 7 repeats this exercise, this time using the Conference Board’s CEO confidence index in lieu of the Michigan consumer confidence series. Given data limitations, the sample period here only begins in the second quarter of 1976. The responses are nevertheless very similar. Government spending follows a hump-shaped response to a spending shock, confidence initially falls and then rises, and the initial impact on output is an increase of about 0.2 percent. As in the case with consumer confidence, the counterfactual impulse responses to the spending shock when confidence is held fixed are very similar to the unconstrained responses, although again the point estimate for the counterfactual output response suggests a stimulating role for confidence.

Next we present some quantitative evidence in the form of spending multipliers. We present two different versions of the multiplier: the “impact” multiplier and the “max” multiplier. The impact multiplier is simply the impact response of output divided by the impact response of government spending to a spending shock. The max multiplier is the maximum response of output (taken over the first twenty quarters) divided by the impact response of government spending. As both government spending and output enter the estimated VARs
in logs, these multipliers would have interpretations as elasticities. So as to put the multipliers in the more familiar dollar terms, we multiply them by the sample average ratio of output to spending. As such, the numbers in the table have the interpretation as the dollar effect on output of a one dollar increase in government spending.

Table 1 shows the estimated multipliers. The first column, labeled “Linear”, gives the estimated spending multipliers in both the system estimated with consumer and the system estimated with CEO confidence. The numbers in brackets are the 90 percent bootstrap confidence bands. The estimated multipliers are all in the neighborhood of one, which is in line with most previous estimates (e.g. Ramey, 2010). The impact and max multipliers are both about 0.75 for the system with consumer confidence, suggesting that a one dollar increase in spending generates about 75 cents in extra output. In the system with CEO confidence, the impact multiplier is 1 and the max multiplier is 1.5; the difference in multipliers between the two systems results primarily from the different sample sizes used (1960 on for consumers and 1976 on for CEOs). The second column, labeled “counterfactual”, gives the estimated counterfactual multipliers when confidence is held fixed following a government spending shock. These are very similar to the unrestricted cases, and one cannot reject the hypothesis that they are equal.

We conduct a number of additional robustness checks on our basic results. As emphasized by Ramey (2010) and discussed in Section 3, there may be important anticipation effects that could bias the estimated impulse response functions. To that end, we include Ramey’s (2010) government spending news variable in the VAR, ordering it first in a Choleski decomposition. The impulse responses to the unanticipated government spending shock (the innovation in g_t ordered second) are very similar to what is shown in Figures 6 and 7. See Appendix section A.2 for more. The inclusion of additional variables other than just output in the block of variables x_t also does not substantively affect our conclusions or our estimates of spending multipliers. As we are primarily interested in the magnitude of the spending affect on output and its relationship with confidence, and not whether the responses of consumption and wages look more Keynesian or more neoclassical, we do not report these results here.\footnote{See, for example, Blanchard and Perotti (2002) or Ramey (2010) for a discussion of whether the impulse responses of other variables – like consumption, hours, and wages – are consistent with the predictions of a standard neoclassical model.}

Our results are also qualitatively unaffected by different lag lengths or different assumptions concerning common trends (e.g. estimating a VECM instead of a VAR in levels or including a deterministic time trend).

In summary, the evidence from the linear VAR specifications suggests that confidence is not an important part of the transmission of government spending shocks into output.
Point estimates suggest that confidence falls on impact in response to spending, though this response is insignificant. Shutting the confidence response down with offsetting “confidence shocks” does not substantively alter the impulse response of output to spending. The spending multipliers are always estimated to be in the neighborhood of one, regardless of whether confidence is allowed to react to the spending shock or not.

Next we examine results from the non-linear specification detailed in Section 3.2. As in Auerbach and Gorodnichenko (2010), we find that the output effects of government spending are much larger in recessions than normal times. Figure 8 shows impulse responses to a spending shock in a recession, with the size of the shock normalized to be the same as in the linear system. The dashed lines are the impulse responses in a recession, the solid lines are the responses estimated from the linear system, and the shaded gray areas are the confidence bands from the linear estimation. Two main features stand out. First, the output response to a spending shock is very different in a recession than in normal times. Importantly, most of the difference is at longer horizons rather than shortly after the spending shock. Secondly, consumer confidence increases on impact and is persistently high following a spending shock, as opposed to declining slightly. This impulse response is statistically different from the linear case. Figure 9 is the same picture using CEO confidence. The pattern of responses is very similar – confidence rises in response to a spending shock and the output response is much larger than in the linear case, particularly at longer horizons.

Having established that output and confidence respond quite differently to government spending shocks in recessions relative to normal times, we next investigate how important the confidence response is for the output response in recessions. Figures 10 and 11 show impulse responses and counterfactual responses to spending shocks in recessions, for systems estimated with consumer and CEO confidence, respectively. The shaded gray regions are the confidence bands for the impulse responses to a spending shock in recessions. Given that we effectively have few observations for recessions, these bands are significantly wider than in the linear case. The results are nevertheless interesting and instructive. For both the cases with consumer confidence (Figure 10) and CEO confidence (Figure 11), we see that shutting down the response of confidence to a spending shock renders the output response significantly smaller and more similar to what obtains in the linear specification. Put differently, it appears as though the systematic response of conventional confidence measures is critical to the transmission of the spending shock to output in recessions.3 The last two columns of Table 1 quantify this finding. Although the impact multipliers in recessions are about the

3See Appendix Section A.3 for a discussion of how robust this result is to an alternative specification based on seemingly unrelated regressions (SUR). In particular, we show that the difference in results is not because confidence not responding to the fiscal shock makes the response of government spending less persistent, which in turn renders the output response to a spending shock smaller.
same as their linear counterparts, the max multipliers for government spending are around 3, or about 3 times as large as in the linear case. These numbers are line with those reported in Auerbach and Gorodnichenko (2010). The counterfactual multipliers, in contrast, are significantly smaller and close to one. While the confidence bands are indeed wide, the evidence suggests that spending multipliers are much larger in recessions than in normal times and that conventional confidence measures are somehow related to that.

5 Why Does Confidence Matter?

The evidence from the previous section suggests the measured confidence of households and firms is somehow related to the transmission of government spending shocks into output during times of economic slack. This finding is in principle consistent with an “animal spirits” type explanation, just as in our simple model from Section 3.3.

However, Barsky and Sims (2010a) show that unexpected increases in measured consumer confidence are associated with slowly-building and persistent increases in output, consumption, and productivity. They argue that confidence innovations reflect news about future economic fundamentals. While they cannot necessarily rule out that this news is observed with substantial noise (they refer to the noise as “animal spirits”), they show that their estimated impulse responses to confidence innovations are inconsistent with animal spirits being an important driving force of aggregate data.

In the spirit of their analysis, we include an empirical measure of productivity into the set of variables x_t in our estimated VAR. As a first pass, we simply use the BLS measure of output per hour in the non-farm business sector. In the Appendix section A.5 we show results using total factor productivity (TFP), which are similar. Formally, the VAR to be estimated includes government spending, confidence, output, and productivity. Given the longer sample size, we focus in this section on the results using consumer confidence. Figure 12 shows responses to the spending shock from this four variable system, both for the linear case (solid line) and the recession case (dashed lines). As in the smaller system, confidence increases on impact in a recession and the output response is much larger, particularly at long horizons. Interestingly, the productivity response to a spending shock is much the same as the output response – essentially zero on impact followed by a large and protracted increase. Put differently, a government spending shock in a recession apparently leads to a very persistent and economically large increase in productivity. In contrast, the response of productivity to a spending shock in normal times is roughly zero at all horizons.

Figure 13 shows the estimated impulse responses to a spending shock in a recession as well as the counterfactual responses when confidence is held fixed. We again use confidence inno-
vations ordered second in a Choleski decomposition in order to construct the counterfactuals. As in Figures 10 and 11, shutting the confidence response down renders the output response to a spending shock significantly smaller. Here we also observe that shutting confidence down renders the productivity response to a spending shock close to zero at all horizons. In light of Barsky and Sims’s (2010a) conclusions about the relationship between productivity and confidence, this should not be surprising. Confidence shocks portend future increases in productivity; using these confidence shocks to construct the counterfactuals will work to offset the productivity response to a spending shock at longer horizons, and thereby also works to shut down the output response.

These results are at least suggestive that it is perhaps not “animal spirits” that is an important part of the transmission of spending shocks during recessions, but rather it is the increase in future productivity. Measured confidence may merely be informative about this future increase in productivity, and constructing counterfactuals using confidence shocks may be (incorrectly, for our purposes) shutting down the productivity response. To determine whether confidence per se matters for the transmission of spending (through, for example, an “animal spirits” channel), we would ideally like to construct counterfactual impulse responses using confidence innovations which are uninformative about future productivity.

We deal with this issue in the following way. Barsky and Sims (2010b) identify time series of “news shocks” about future total factor productivity and contemporaneous surprise TFP shocks; the news shocks are uncorrelated with current TFP but predict future TFP and are strongly correlated with consumer confidence innovations. Using their estimated parameters and time series of news and contemporaneous TFP shocks, we can construct a synthetic confidence series that has been purged of any direct influence from these shocks. See the Appendix section A.4 for details on the construction of the synthetic series. By using innovations to the synthetic confidence series to construct the counterfactuals, we can be assured that we are not using productivity shocks or news shocks about productivity to shut down the confidence response.

We consider two separate cases. The first case uses a synthetic confidence series purged of the effect of news about future TFP. The second uses a synthetic confidence series purged of the effect of contemporaneous TFP shocks. See Appendix A.4 for details on the construction of these series, as well as a time series plot comparing the synthetic series to the actual confidence series. We then re-estimate the system above using either synthetic confidence series, both for the linear case and the non-linear case, and use our counterfactual methodology to examine the importance of the systematic component of confidence for the transmission of spending shocks both in normal times and in recessions.

The first exercise uses confidence purged of just news about future TFP. The basic
features from the above systems are still in place. In normal times, the spending multiplier is around 1, confidence falls in response to spending, and productivity does not react. In recessions the multiplier is much larger (driven by the responses at longer horizons), the synthetic confidence series rises on impact, and productivity increases over longer horizons. These features are evident in Figure 14, which shows the recession impulse responses as solid lines and confidence bands in shaded gray. The counterfactual impulse responses shutting down the response of the synthetic confidence series are depicted by the dashed lines. Here we see that shutting confidence down with offsetting confidence shocks has almost no effect on the output and productivity responses to a spending shock in a recession. Put differently, using confidence shocks devoid of any information about future productivity has no effect on the output impulse response to a spending shock. This suggests that news about future productivity is what is key in the transmission of the spending shock in a recession, not confidence per se.

We do the same exercise in Figure 15, but this time use a synthetic confidence series purged of the influences of current TFP shocks. Here we see that constructing counterfactuals in which this confidence series does not respond to a spending shock does render the impulse responses of output and productivity much smaller and close to those that obtain in the linear estimation. Purging measured confidence of the influence of current TFP shocks yields counterfactual impulse responses which are similar to what obtains with the baseline confidence series, suggesting that effects on current productivity do not drive our result that confidence is a key part of the transmission of a spending shock in a recession.

These findings combined suggest that it is in fact news about future productivity that drives the differential response of output to a spending shock in a recession. Confidence merely reflects information about future productivity. If confidence mattered independently of an effect on future productivity, then when using the synthetic confidence series purged of news about productivity we would observe a difference in the counterfactual impulse response of output. That we do not suggests that it is not confidence per se that is an important part of the transmission of spending shocks into output.

The evidence presented thus far suggests that government spending shocks have differential effects on both confidence and output in recessions relative to normal times, and that this differential effect is driven by an effect of spending on future productivity. We investigate this link further by decomposing government spending into its two main constituent components – consumption and investment. We estimate a four variable system featuring the following variables: total government spending, consumer confidence, real output, and the log ratio of government investment expenditure to consumption expenditure (here we use the raw, not synthetic, confidence series). Our hypothesis is that the mix of investment
and consumption expenditures is different between recessions and normal times, and that this may account for the differential responses of confidence and productivity.

Figure 16 shows impulse responses from the linear system to a spending shock; the dashed lines show the counterfactual responses when confidence is shut down. The pattern of responses for output and confidence are similar to before. We see that the ratio of investment to consumption expenditure rises on impact following a spending shock, but thereafter quickly reverts back to its pre-shock level. Figure 17 shows the responses from the same system to a spending shock in a recession (dashed line). Here the response of the government investment/consumption ratio is quite different in a recession. Rather than reverting back to its pre-shock value, the investment/consumption ratio remains permanently higher following a spending shock during a recession. This suggests that there is an important difference in the longer term consequences for the composition of government spending following a spending shock in a recession. Figure 18 shows impulse responses in a recession for the counterfactual case in which the confidence response is shut down. Here we see that shutting confidence down renders the output response to a spending shock significantly smaller and leaves the response of the investment/consumption ratio far more transitory (and similar to the linear case).

In summary, government spending shocks in recessions seem to be associated with a permanently elevated level of investment expenditure relative to consumption expenditure. It is easy to envision scenarios of why this would lead to productivity gains in the private sector. This connection between government spending, the composition of government spending, and productivity seems to be the key to the relationship between confidence and the transmission of spending shocks in a recession. Confidence does not seem to be an important part of the transmission of spending shocks per se, but rather reflects information about future productivity gains that will result as a consequence of the extra government spending.

6 Conclusion

In this paper we tackle the following question: Does the transmission of fiscal spending shocks depend on systematic movements in consumer and business confidence? In doing so, we shed some new light on how expansionary fiscal policy stimulates the economy, and, to the best of our knowledge, study for the first time the role of systematic movements in consumer and business confidence for aggregate economic fluctuations. We find that the endogenous response of conventional measures of confidence explains almost all of the additional output stimulus in recessions, whereas its role in normal times is minor. Importantly, the positive response of output and productivity on a fiscal stimulus is mild on impact, gradual and
prolonged. This suggests that fiscal stimulus in recessions is really different from fiscal stimulus in normal times in that it boosts long-term productivity. Indeed, we find that fiscal expansions in recessions are relatively stronger in government investment. It is this long-term productivity boost that is reflected in the important role of the systematic response of conventional confidence measures for recessionary fiscal transmission.
References

paper, University of Michigan, 2009.

[18] Rossi, Barbra and Sarah Zubairy. “What is the Importance of Monetary and Fiscal

[19] Shapiro, Matthew and Valerie Ramey. “Costly Capital Reallocation and the Effects
of Government Spending.” Carnegie-Rochester Conference Series on Public Policy, 48,

University, 2004.

Table 1: Spending Multipliers

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Counterfactual</th>
<th>Recession</th>
<th>Counterfactual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Multiplier</td>
<td>0.735</td>
<td>0.811</td>
<td>0.664</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>[0.35, 1.15]</td>
<td>[0.43, 1.20]</td>
<td>[-0.33, 1.91]</td>
<td>[-0.22, 1.97]</td>
</tr>
<tr>
<td>Max Multiplier</td>
<td>0.735</td>
<td>0.811</td>
<td>3.717</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>[0.43, 2.33]</td>
<td>[0.43, 1.20]</td>
<td>[0.10, 7.47]</td>
<td>[0.07, 5.88]</td>
</tr>
<tr>
<td>CEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Multiplier</td>
<td>1.011</td>
<td>1.052</td>
<td>0.517</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>[0.46, 1.59]</td>
<td>[0.58, 1.59]</td>
<td>[-0.58, 2.46]</td>
<td>[-0.43, 2.52]</td>
</tr>
<tr>
<td>Max Multiplier</td>
<td>1.522</td>
<td>1.080</td>
<td>2.930</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>[0.69, 4.07]</td>
<td>[0.58, 1.82]</td>
<td>[0.26, 14.1]</td>
<td>[-0.06, 11.82]</td>
</tr>
</tbody>
</table>

This table shows spending multipliers from the benchmark three variable systems described in Section 4. The “linear” column corresponds to the linear specification, and the following “counterfactual” column is the counterfactual multiplier in the linear specification. The “recession” column corresponds to the recession estimates from the non-linear specification, and the following counterfactual column presents multipliers in the counterfactual case for a recession. The numbers have the interpretation as the dollar impact on output (either on impact or the maximum effect over 20 quarters) for a one dollar increase in spending. The numbers in brackets are 90 percent bootstrap confidence intervals.
Figure 1: Consumer Confidence

This figure plots the forward-looking index from the Michigan Survey of Consumers. Shaded gray areas are recessions as defined by the NBER.

Figure 2: CEO Confidence

This figure plots the composite CEO confidence index from the Conference Board. Shaded gray areas are recessions as defined by the NBER.
This figure plots the function $f(z_t)$, where z_t is defined as the seven quarter moving average of real GDP growth. Shaded gray areas are recessions as defined by the NBER. The dashed black line is our cutoff for calling a period a “recession”: $f(z_t) = 0.8$.

Figure 3: $f(z_t)$ Across Time
This figure shows theoretical and average estimated impulse responses to a government spending shock from a simple real business cycle model, as described in Section 3.3 of the text.
This figure shows theoretical and average estimated impulse responses to a government spending shock from a model with increasing returns to scale and multiple equilibria, as described in Section 3.3 of the text.
This figure shows impulse responses to a government spending shock from the benchmark system with government spending, consumer confidence, and real GDP. The solid lines are the estimated impulse responses. The shaded gray areas are confidence bands. The dashed lines are the counterfactual impulse responses when confidence is held fixed.
This figure shows impulse responses to a government spending shock from the benchmark system with government spending, CEO confidence, and real GDP. The solid lines are the estimated impulse responses. The shaded gray areas are confidence bands. The dashed lines are the counterfactual impulse responses when confidence is held fixed.
Figure 8: Government Spending and Consumer Confidence: Recessions

The dashed lines in this figure are impulse responses to a government spending shock in a recession from a non-linear system with government spending, consumer confidence, and real GDP. The solid lines are the estimated impulse responses from the linear system, and the shaded gray areas are the confidence bands from the linear system.
Figure 9: Government Spending and CEO Confidence: Recessions

The dashed lines in this figure are impulse responses to a government spending shock in a recession from a non-linear system with government spending, CEO confidence, and real GDP. The solid lines are the estimated impulse responses from the linear system, and the shaded gray areas are the confidence bands from the linear system.
The solid lines in this figure are estimated impulse responses to a government spending shock in a recession. The shaded gray regions are the 90 percent confidence bands from a . . . The dashed lines are the counterfactual impulse responses from shutting the response of confidence to spending down with offsetting confidence shocks. The underlying system features consumer confidence.
Figure 11: Government Spending and CEO Confidence: Recessions and Counterfactuals

The solid lines in this figure are estimated impulse responses to a government spending shock in a recession. The shaded gray regions are the 90 percent confidence bands from a . . . The dashed lines are the counterfactual impulse responses from shutting the response of confidence to spending down with offsetting confidence shocks. The underlying system features CEO confidence.
The underlying VAR features government spending, consumer confidence, real output, and labor productivity. The solid black lines are the impulse responses to a spending shock from the linear system; the shaded gray regions are the associated confidence bands. The dashed lines are the impulse responses to a spending shock in a recession.
The underlying VAR features government spending, consumer confidence, real output, and labor productivity. The solid black lines are the estimated impulse responses in a recession and the shaded gray areas are the confidence bands. The dashed lines are the counterfactual impulse responses in which the confidence response is held fixed.
The underlying VAR features government spending, a synthetic consumer confidence, real output, and labor productivity. The synthetic confidence series is constructed such that there is no information about future productivity in it. The solid black lines are the estimated impulse responses in a recession and the shaded gray areas are the confidence bands. The dashed lines are the counterfactual impulse responses in which the confidence response is held fixed.
The underlying VAR features government spending, a synthetic consumer confidence, real output, and labor productivity. The synthetic confidence series is constructed such that there is no information about current TFP in it. The solid black lines are the estimated impulse responses in a recession and the shaded gray areas are the confidence bands. The dashed lines are the counterfactual impulse responses in which the confidence response is held fixed.
The underlying VAR features government spending, consumer confidence, real output, and the ratio of government investment to consumption expenditure. The solid black lines are the estimated impulse responses and the shaded gray areas are the confidence bands. The dashed lines are the counterfactual impulse responses in which the confidence response is held fixed.
The underlying VAR features government spending, consumer confidence, real output, and the ratio of government investment to consumption expenditure. The solid black lines are the estimated impulse responses in the linear system and the shaded gray areas are the confidence bands. The dashed lines are the estimated responses in a recession.
The underlying VAR features government spending, consumer confidence, real output, and the ratio of government investment to consumption expenditure. The solid black lines are the estimated impulse responses in a recession and the shaded gray areas are the confidence bands. The dashed lines are the estimated counterfactual responses when confidence is held fixed.
A Appendix

A.1 Quotes

“We must be certain that programs to solve the current financial and economic crisis are large enough, and targeted broadly enough, to impact public confidence.” – Robert Shiller

“Yale’s Bob Shiller argues that confidence is the key to getting the economy back on track. I think a lot of economists would agree with that.” – N. Gregory Mankiw

“Enacting such a conditional stimulus would have two desirable effects. First, it would immediately boost the confidence of households and businesses since they would know that a significant slowdown would be met immediately by a substantial fiscal stimulus.” – Martin Feldstein

“But the hope that monetary and fiscal policies would prevent continued weakness by boosting consumer confidence was derailed by the recent report that consumer confidence in January collapsed to the lowest level since 1992.” – Martin Feldstein

“The economy is stagnant because of a lack of confidence in the future.” – Russell Roberts

“. . . that at some point, people could lose confidence in the U.S. economy in a way that could actually lead to a double-dip recession.” – President Barack Obama

“The stimulus was too small, and it will fade out next year, while high unemployment is undermining both consumer and business confidence.” – Paul Krugman

“It’s only an attempt to perhaps provide a bit of additional confidence, a bit of additional assurance or a bit of additional certainty to the markets about the Federal Reserve’s long-term objective.” – Ben Bernanke

“Economic activity in the United States turned up in the second half of 2009, supported by an improvement in financial conditions, stimulus from monetary and fiscal policies, and a recovery in foreign economies. These factors, along with increased business and household confidence, appear likely to boost spending and sustain the economic expansion.” – Ben Bernanke

“Confidence today will be enhanced if we put measures in place that assure that the coming expansion will be more sustainable and fair in the distribution of benefits than its predecessor.” – Larry Summers
“President Obama’s top priority has been to stop the vicious cycle of economic and financial collapse, stem the historic rate of job loss, restore confidence and put the economy on a path to recover.” – Larry Summers

“Others say that we should have a fiscal stimulus to ‘give people confidence,’ even if we have neither theory nor evidence that it will work.” – John Cochrane

“The subsequent global sell-off in equity markets suggested that governments would need to take action with more immediate impact to restore confidence in the markets.” – James Bullard

A.2 Accounting for Fiscal News

Ramey (2010) stresses that conventional VAR identified government spending shocks are often predictable. She argues that this predictability of the shocks can account for why the Ramey-Shapiro (1998) war date approach yields neoclassical looking impulse responses (in the way of consumption, wages, etc.) whereas Blanchard and Perotti (2002) find more “Keynesian” responses of these variables. The reason, she argues, is that the Ramey-Shapiro war dates get the timing right, whereas the Blanchard and Perotti government spending shocks are predictable.

Ramey (2010) produces a time series of “news” about future government spending; the news is the present discounted value of expected changes in future defense spending, based on a narrative reading of the historical record. This can be incorporated into the VAR, with the system of variables to be estimated \(Y_t = [g_t^a, g_t, conf_t, x_t] \), where \(g_t^a \) is the defense news variable. We can then identify impulse responses to two different spending shocks: defense news (innovation in defense news series ordered first), and the conventional unanticipated government spending shock (the innovation in actual government spending ordered after the news variable). We can construct the counterfactuals in which the responses of confidence is held fixed just as in the usual case. Figure A-1 shows the actual and counterfactual responses of actual spending, confidence, and real GDP to the defense news shock. Figure A-2 does the same for a surprise spending shock.
Figure A-1: Impulse Responses to Defense News

Figure A-2: Impulse Responses to Unanticipated Spending

Figure A-1 shows the impulse responses to a defense news shock as defined in Ramey (2010). Figure A-2 shows impulse responses to an unanticipated government spending shock. The system features defense news, total government spending, consumer confidence, and real GDP. The solid lines are the estimated impulse responses. The shaded gray areas are confidence bands. The dashed lines are the counterfactual impulse responses when confidence is held fixed.

As with the Ramey and Shapiro (1998) "war date" approach, however, the defense news spending variable has much less predictive power for the time path of actual spending when the sample does not include the 1950s and the Korean War. This is evident in the upper panel of Figure A-1, where the actual spending response to the news variable is relatively small. Here confidence reacts positively on impact, but not significantly so. Shutting confidence down leaves the output response to the defense news shock smaller than in the unrestricted case, as we might expect, though the difference is statistically insignificant. Comparison of Figure A-2 with the corresponding figure in the case where we do not include the defense news
variable (Figure 6) reveals that the responses to a surprise spending shock are very similar. Figure A-3 below shows the recession and linear impulse responses to an unanticipated government spending shock; these are also very similar to the benchmark case in which we do not directly control for news. Controlling for news primarily affects the responses of consumption and wages, which are not of as much interest to us.

![Figure A-3: Impulse Responses to Unanticipated Spending](image)

This figure shows impulse responses to an unanticipated government spending shock, both in the linear case (solid lines) and in a recession (dashed lines). The system features defense news, total government spending, consumer confidence, and real GDP. The solid lines are the estimated impulse responses. The shaded gray areas are confidence bands. The dashed lines are the counterfactual impulse responses when confidence is held fixed.

A.3 Seemingly Unrelated Regressions

In the main text, we find that government spending multipliers are much larger in recessions versus normal times. In addition, we find that shutting the response of confidence to the spending shock down renders the output response much smaller. One potential concern is that the response of government spending to its own shock is not the same when confidence is “shut down”. For example, see the impulse responses in Figure 10. There we observe that a spending shock in a recession is more or less permanent; when shutting confidence down the response is about half as large at horizons of five years.

In principle, the output response to a spending shock could be much smaller because the government spending response to its shock is less persistent. On the other hand, the government spending response could be smaller because the output response is much smaller when confidence is held fixed. To the extent to which government spending responds positively to output fluctuations with a delay, a weaker and less persistent response of government
spending to its own shock should be expected. On the other hand, it could also be the case the government spending is responding directly to lagged confidence. While this is always possible, one might be concerned that imprecisely estimated coefficients on lagged confidence could cause the government spending response to be less persistent, which could in turn lead to the smaller output response.

To address this possibility, we re-estimate the system using seemingly unrelated regressions (SUR), in which we impose a coefficient restriction that the coefficients on lagged confidence in the government spending equation are all zero. The identification of the spending shock and construction of counterfactuals is otherwise the same. Figure A-4 shows the linear and linear counterfactual cases; Figure A-5 shows the linear vs. recession IRFs, and Figure A-6 shows the recession vs. recession counterfactual IRFs. Although there are some minor differences with the benchmark estimates, the qualitative responses are the same, and the conclusions about the role of confidence in the transmission of spending shocks during a recession are the same.

Figure A-4: Impulse Responses to Spending Shock: SUR
Figures A-4 through A-6 show impulse responses from a baseline system, but estimated via seemingly unrelated regressions (SUR) imposing that lagged confidence does not appear in the government spending equation. Shaded areas are confidence bands.

A.4 Constructing “Synthetic” Confidence

The “synthetic” confidence series we use in the paper is based on the analysis in Barsky and Sims (2010b). They estimate a VAR with a number of variables included, among them consumer confidence and a measure of total factor productivity (TFP), based off a quarterly version of the Basu, Fernald, and Kimball (2006) utilization-corrected measure. Let X_t be the vector of variables in the system; in the version we use to construct the “synthetic” confidence series, the variables included are TFP, a forward-looking measure of consumer confidence, stock prices, consumption, output, a measure of inflation, and total hours worked. The structural moving average representation can be written:
\[X_t = C(L)\epsilon_t \]

Barsky and Sims (2010b) identify the system using the restriction that a contemporaneous TFP shock and a TFP news shock explain most of the forecast error variance in TFP. Thus they provide estimates of \(C(L) \) as well as a time series for two structural shocks – a contemporaneous TFP shock and a TFP news shock. Let confidence be indexed by \(i = 2 \), the contemporaneous TFP shock be indexed by \(j = 1 \), and the TFP news shock be indexed by \(j = 2 \). The predicted level of measured confidence based on news and TFP shocks, respectively, is then:

\[
\hat{\text{conf}}_{\text{news}}^{t} = \hat{C}_{2,2}(L)\hat{\epsilon}_{2,t} \\
\hat{\text{conf}}_{\text{tfp}}^{t} = \hat{C}_{2,1}(L)\hat{\epsilon}_{1,t}
\]

The “synthetic” confidence series are then equal to the actual confidence series minus this predicted value (and mean-adjusted):

\[
\hat{\text{conf}}_{\text{sn}}^{t} = \text{conf}_{t} - \hat{\text{conf}}_{\text{news}}^{t} \\
\hat{\text{conf}}_{\text{st}}^{t} = \text{conf}_{t} - \hat{\text{conf}}_{\text{tfp}}^{t}
\]

We simply use either of these series in place of the forward-looking Michigan Survey question. A time series of the synthetic confidence series purged of the influences of news about TFP is in Figure A-7 below:
This figures plots actual consumer confidence (solid blue line) and our “synthetic” confidence series, which is purged off influences related to news about TFP. The shaded gray areas are NBER defined recessions.

The times series look fairly similar, but there are important differences, particularly in the conditional relationships between innovations in these series and future economic activity. Barsky and Sims (2010a) report that news shocks about future TFP account for between 30 and 70 percent of the variation in measured confidence at business cycle frequencies; surprise TFP shocks account for less than 5 percent. Thus, up to two-thirds of the variation in confidence is unexplained by these two shocks; hence the fact that these two series are visually very similar. Importantly, Barsky and Sims (2010a) argue that while news about productivity does not explain all of variation in confidence, it does account for almost all of the relationship between confidence and economic activity.

A.5 TFP vs. Labor Productivity

The results in Section 5 are not sensitive to the choice of measure of aggregate productivity. In the text we use the BLS measure of output per hour in the nonfarm business sector. Here we also report results where total factor productivity (TFP) is used instead. The TFP measure we use is based on the growth accounting approach of Basu, Fernald, and Kimball (2006). It is quarterly in nature and uses observed labor hours to proxy for unobserved variation in capital and labor utilization. For more details see their paper.
Figures A-8 and A-9 show impulse responses to a four variable system featuring government spending, confidence, output, and a quarterly version of Basu, Fernald, and Kimball’s (2006) utilization-adjusted TFP measure. Figure A-8 shows linear and recession impulse responses, while Figure A-9 shows recession and recession counterfactual responses. Shaded gray areas are confidence bands.

These responses paint a similar picture to those discussed in the text using labor productivity. There is an important difference in terms of the TFP response to a government spending shock in recessions vs. normal times, and constructing counterfactuals in which confidence is shut down yields very different impulse responses in the recession regime.