Financial Crises and Exchange Rate Policy*

Luca Fornaro†

This draft: February 2012

Abstract

This paper develops a dynamic small open economy model featuring an occasionally binding collateral constraint and nominal wage rigidities. The goal is to study the performance of alternative exchange rate policies in economies that endogenously alternate between tranquil times and crises. Financial frictions introduce a trade-off between price and financial stability. For low levels of foreign debt the probability of a future crisis is small and the best policy consists in targeting wage inflation. For high levels of foreign debt the probability of a future crisis is high and wage inflation targeting is dominated by a flexible exchange rate targeting rule, because the latter policy does a better job in mitigating the fall in output, consumption and capital inflows during crisis events. In contrast, pegging the exchange rate is always welfare dominated by targeting wage inflation. I also find that the exchange rate regime affects both the behavior of the economy during crisis events and the crisis probability, through its impact on debt accumulation during tranquil times.

Keywords: Financial crises, Monetary Policy, Sudden Stops, Exchange Rate Regime, Nominal Wage Rigidities.

JEL Classification Numbers: G01 E44 E52 F32 F34 F41

* I am extremely grateful to Gianluca Benigno, Ethan Ilzetzki, Albert Marcet, Juan Pablo Nicolini, Michele Piffer, Christopher Pissarides, Romain Ranciere, Kevin Sheedy and Silvana Tenreyro for useful comments. I also thank seminar participants at the LSE, the PSE, the University of Surrey, the 13th ZEW Summer Workshop for Young Economists and the XVI Workshop on Dynamic Macroeconomics. Financial support from the French Ministère de l’Enseignement Supérieur et de la Recherche, the ESRC, the Royal Economic Society and the Paul Woolley Centre is gratefully acknowledged.

† Department of Economics, London School of Economics, Houghton Street, WC2A 2AE London and Paris School of Economics, 48 Boulevard Jourdan, 75014 Paris. E-mail: l.fornaro@lse.ac.uk

1
1 Introduction

Since the financial liberalization wave of the 1980s, several countries have experienced financial crises characterized by sudden arrests of international capital inflows and sharp drops in output, consumption and asset prices. These episodes, known as sudden stops, have sparked great interest in the design of monetary and exchange rate policies in financially fragile economies. Should these economies let their exchange rate float or rather anchor it to a foreign currency? Should monetary policy be concerned only with its traditional objective of granting price stability or should it also care about financial stability?

This paper presents a theoretical framework useful to evaluate alternative monetary policy rules for sudden stop-prone economies. The key difference with respect to the existing literature on monetary economics is the focus on economies that endogenously alternate between tranquil times and crises. This aspect is crucial, since empirical evidence shows that decisions about debt accumulation taken during tranquil times are important determinants of the incidence and severity of sudden stops.\footnote{For example Gourinchas and Obstfeld (2011), using data from a large sample of advanced and developing countries, document how fast debt accumulation during tranquil times increases the risk of entering a financial crisis and the impact of a crisis event on the economy.}

The model embeds several features typical of financially fragile open economies. The focus is on small open economies subject to standard productivity shocks. Domestic agents trade in financial assets with foreign investors to smooth consumption over time. Crises occur as the outcome of frictions on the international credit markets. There are two key elements. First, there is a limit on domestic agents’ external borrowing in the form of a collateral constraint. When foreign borrowing is below the value of collateral the economy displays business cycle types of fluctuations, while when domestic agents borrow up to the full value of their collateral the economy falls into a crisis. Importantly, the debt limit is only occasionally hit by domestic agents, so that the model can be used to study both crisis periods and pre-crisis tranquil times. Second, collateral value depends on an asset price, specifically on the price of land. This generates a financial accelerator mechanism, akin to Fisher’s debt deflation, based on a feedback cycle of tightening borrowing constraints, declining capital inflows, fire sales of land and falling land price. This financial amplification mechanism allows the model to reproduce salient features of sudden stop episodes when the collateral constraint binds. In accordance with
empirical evidence this formulation of financial frictions implies that the probability that
the economy experiences a sudden stop and the severity of crisis episodes are increasing
in the stock of foreign debt accumulated by domestic agents during tranquil times.

Exchange rate policy has real effects because nominal wages are sticky. This is moti-
vated by the existence of a substantial body of evidence that points toward the importance
of nominal wage rigidities for the transmission of monetary policy (see Olivei and Ten-
reyro (2010)).

In addition, foreign liabilities are denominated in a foreign currency, a
phenomenon dubbed ‘liability dollarization’ typical of emerging markets subject to the
risk of experiencing a sudden stop.

I use the model to compare the performance of three alternative monetary rules: a
fixed exchange rate rule and two types of floating exchange rate regimes. The first type of
float considered is a policy of strict wage inflation targeting. This rule eliminates all the
distortions arising from nominal wage stickiness and it corresponds to the price stability
rule of closed-economy sticky price models. The second type of float is a policy of flexible
exchange rate targeting in which the central bank intervenes to smooth out deviations of
the exchange rate from a target. This rule parallels flexible price level targeting rules in
closed-economy models and represents a simple alternative to wage inflation targeting.

While a large literature has focused on the credibility of different monetary regimes, I
abstract from this issue by assuming that the central bank credibly commits to a policy
regime at the start of the first period and then sticks to it forever.

I start by looking at how the exchange rate regime affects the behavior of the economy
during crises. Then I explore the impact of the monetary regime on debt accumulation, on
the probability that the economy enters a crisis and on business cycle moments. Finally,
I compare the welfare performance of the three rules focusing on how the welfare ranking
is affected by the presence of the Fisherian deflation mechanism and by the economy’s
stock of net foreign assets.

I find that depreciating the exchange rate during a crisis mitigates the fall in output
and consumption, despite the presence of liability dollarization. On the one hand, a
depreciation reduces the cost of labor and pushes firms to increase employment and
production. On the other hand, a depreciation increases the domestic currency value

---

2The role of rigidities in wage setting has been emphasized by several authors in the context of the
current Eurozone crisis (Feldstein (2010) and Krugman (2010)).
of foreign liabilities and tightens domestic agents’ collateral constraints. However, this
last effect is counteracted by a third one. By stimulating output a depreciation has
also a positive effect on consumption. The increase in consumption in turns reduces the
incentive to fire sale land and sustains its price. In equilibrium the impact on the price
of land overcomes the increase in the domestic currency value of foreign liabilities and
a depreciation actually relaxes domestic agents’ collateral constraints. A fixed exchange
rate exacerbates the fall in output, consumption and land price during crises. Comparing
the two floating exchange rate policies, the flexible exchange rate targeting rule is the
one that mitigates more the impact of crises on the real economy.

Turning to the effect of the monetary regime on precautionary savings and crisis
probability, the currency peg is the regime that stimulates more the accumulation of
precautionary savings, followed by the policy of targeting wage inflation and by the
flexible exchange rate targeting rule. The intuition is simple: the more crises disrupt
economic activity, the more agents accumulate precautionary savings to reduce the risk
of experiencing a sudden stop. Since the peg is the regime under which crises have the
strongest impact on output and consumption, the peg is also the regime under which the
accumulation of precautionary savings is stronger. Moreover, since crises are milder when
the central bank adopts a flexible exchange rate targeting rule, agents accumulate less
precautionary savings under flexible exchange rate targeting than under a policy of strict
wage inflation targeting. The outcome is that the currency peg is the regime featuring
the lowest crisis probability, while the probability of experiencing a sudden stop is highest
under a policy of flexible exchange rate targeting.

The main result of the paper concerns the role of the collateral constraint and of
the stock of net foreign assets in determining the welfare ranking between strict wage
inflation targeting and the flexible exchange rate targeting rule. I show that in a version
of the model in which the collateral constraint is replaced by a fixed borrowing limit,
and hence in which Fisher’s debt deflation channel is shut down and financial crises are
not present, the strict wage inflation targeting rule delivers higher welfare gains than the
flexible exchange rate targeting rule for any initial state of the world. This finding is in
line with the well known result that, in models in which the only distortions come from
monopolistic competition in the labor market and from nominal wage stickiness, a policy
that corrects for nominal rigidities approximates well the optimal policy.
The Fisherian deflation mechanism generates another source of inefficiency, because atomistic agents do not internalize the impact of their actions on the price of land and on the value of collateral. The presence of this pecuniary externality gives an incentive for the central bank to deviate from its traditional price stability objective to take actions that sustain the price of land and thus domestic agents’ access to the international credit markets in states in which the collateral constraint binds. In fact, once the Fisherian deflation mechanism is introduced the welfare ranking between wage inflation targeting and the flexible exchange rate targeting rule depends on the stock of foreign assets owned by domestic households. For high levels of net foreign assets the probability of a future crisis is small and a policy of targeting wage inflation is preferred, due to its good ability in managing normal business cycle fluctuations. For low levels of net foreign assets the risk of a crisis is high and flexible exchange rate targeting becomes the preferred regime, since it does a better job in mitigating the fall in the price of land and in capital inflows during crisis events compared to the wage inflation targeting rule. In contrast, the peg is always welfare dominated by the other two rules. This happens because during tranquil times the peg does not remove the distortions due to wage stickiness, while during crisis times the peg exacerbates the fall in the price of land and in capital inflows compared to the other two regimes.

This paper is related to two strands of the literature. The first one focuses on the design of monetary policy in financially fragile small open economies. Cespedes et al. (2004) and Moron and Winkelried (2005) compare the performance of different monetary regimes in small open economies featuring financial market imperfections. Contrary to this paper, their models focus on business cycle fluctuations and are not suited to study economies occasionally subject to financial crises. Christiano et al. (2004), Cook (2004), Gertler et al. (2007), Braggion et al. (2007) and Curdia (2007) all use quantitative models to analyze the impact of monetary policy interventions during crisis times. In their frameworks crises are unexpected one-shot events, while this paper presents a model in which crises alternate with tranquil times and crises probabilities are rationally anticipated by agents. This allows the analysis of the impact of monetary policy on the probability of entering a crisis, an issue on which the existing literature is silent. Aghion et al. (2004), Caballero and Krishnamurthy (2004), Bordo and Jeanne (2002) and Benigno et al. (2011b) consider monetary economies featuring both tranquil periods and
crises. However their focus is on static models, while the dynamics of debt accumulation play a key role in the model presented in this paper. Finally, this paper shares with Schmitt-Grohé and Uribe (2011) the focus on the performance of different exchange rate regimes in economies subject to the risk of experiencing a deep recession. However, in their model recessions are exogenous events and there is no financial amplification, while in this model the probability of entering a crisis is endogenous and the interaction between the exchange rate regime and Fisher’s debt deflation is key.

The second strand of related literature employs dynamic real business cycle models featuring occasionally binding credit constraints and financial accelerator mechanisms to describe economies prone to sudden stops and draw implications about policy conduct in small open economies. Examples are Mendoza (2010), Bianchi (2011), Benigno et al. (2011a), Jeanne and Korinek (2010) and Bianchi and Mendoza (2010). The novelty of this paper with respect to this literature resides in the focus on monetary policy and on the interplay between Fisher’s debt deflation and nominal wage rigidities.

The rest of the paper is structured as follows. Section 2 describes the model. Section 3 presents the calibration and the results of the numerical simulations. Section 4 concludes.

2 Model

Consider an infinite-horizon small open economy. Time is discrete and indexed by \( t \). The economy is populated by a continuum of mass 1 of households that consume a single tradable good and engage in financial transactions with foreign investors. There is also a large number of competitive firms that produce the consumption good using factors of production supplied by the households and a central bank that uses the interest rate on domestic bonds as its policy instrument.

2.1 Firms and production

Firms are owned by the households. They are competitive, take all prices as given and produce the tradable consumption good according to the production function

\[
Y_t = z_t F(L_t, M_t, K_t),
\]
where $Y_t$ denotes output, $F(\cdot)$ is a decreasing-returns-to-scale production function and $z_t$ is a total factor productivity (TFP) shock. The productivity shock follows a finite-state, stationary Markov process and represents the only source of uncertainty in the model. Firms produce using labor $L_t$, an intermediate input $M_t$ and land $K_t$. All the factors of production are purchased or rented from domestic households.

As in Obstfeld and Rogoff (2000), each household supply a differentiated labor input. $L_t$ is a CES aggregate of the differentiated labor services

$$L_t = \left[ \int_0^1 L_t^i \frac{\sigma - 1}{\sigma} \, di \right]^{\frac{\sigma}{\sigma - 1}},$$

where $L_t^i$ denotes the labor input purchased from household $i$ and $\sigma > 1$.

Purchasing power parity holds so $P_t = S_t P_t^*$. $P_t$ and $P_t^*$ are respectively the domestic and foreign currency price of the consumption good. $S_t$ denotes the nominal exchange rate, defined as the units of domestic currency needed to buy one unit of the foreign currency. For simplicity, I assume that $P_t^*$ is constant and normalize it to 1. Hence, the domestic currency price of the consumption good is equal to the nominal exchange rate $P_t = S_t$.

In every period, the representative firm maximizes profits

$$\Pi_t = S_t Y_t - \int_0^1 W_t^i L_t^i di - R_M^M M_t - R_K^K K_t,$$

where $W_t^i$ is the wage rate of household $i$, $R_M^M$ is the price of the intermediate input and $R_K^K$ is the rental rate of land, all expressed in units of the domestic currency.

The minimum cost of a unit of aggregate labor $L_t$ is given by

$$W_t = \left[ \int_0^1 W_t^i \frac{1}{1 - \sigma} \, di \right]^{-\frac{1}{\sigma}},$$

which can be taken as the aggregate wage. Using this definition, profit maximization implies the equality between factor prices and marginal productivities:

$$W_t = S_t z_t F_L(L_t, M_t, K_t)$$

$$R_M^M = S_t z_t F_M(L_t, M_t, K_t)$$

$$R_K^K = S_t z_t F_K(L_t, M_t, K_t),$$

$^3$Decreasing returns to scale in production derives from the assumption that production also requires the input of managerial capital, of which each firm has a fixed supply.
where $F_L$, $F_M$ and $F_K$ are the derivatives of the production function respectively in $L_t$, $M_t$ and $K_t$. Finally, cost minimization gives the demand for household’s labor

$$L_t^i = \left( \frac{W_t}{W_t^i} \right)^\sigma L_t.$$  

(6)

### 2.2 Households

Households are the main actors in the economy. Each household derives utility from consumption $C_t^i$ and experiences disutility from labor effort $L_t^i$. The lifetime utility of a generic household $i$ is given by

$$E_0 \left[ \sum_{t=0}^{\infty} \beta^t U(C_t^i, L_t^i) \right].$$

(7)

In this expression, $E_t[\cdot]$ is the expectation operator conditional on information available at time $t$ and $\beta$ is the subjective discount factor. The period utility function $U(\cdot)$ is assumed to be increasing in the first argument, decreasing in the second argument, strictly concave and twice continuously differentiable.

Each household can trade in one period, non-state contingent foreign and domestic bonds. The foreign bond is traded with foreign investors, it is denominated in units of the foreign currency and pays a fixed gross interest rate $R^*$, determined exogenously in the world market. The domestic bond is denominated in units of the domestic currency, pays the gross interest rate $R_t$ and is traded only among domestic agents. Moreover, households can purchase and sell units of land.

The budget constraint of household $i$ in terms of the domestic currency can be written as

$$S_t C_t^i + S_t B_{t+1}^{*i} + B_{t+1}^i + Q_t(K_{t+1}^i - K_t^i) = W_t^i L_t^i + R_t^K K_t^i + S_t R^* B_{t+1}^{*i} + R_{t-1} B_t^i + \Pi_t + (R_t^M - S_t P^M) M_t^i.$$  

(8)

The left-hand side of this expression represents the household’s expenditure. This is given by the sum of consumption expenditure $S_t C_t^i$, investment in foreign bonds $S_t B_{t+1}^{*i}$, investment in domestic bonds $B_{t+1}^i$ and net purchases of land $Q_t(K_{t+1}^i - K_t^i)$. $Q_t$ is the price of land at time $t$ in units of the domestic currency, while $K_t^i$ denotes the household’s holdings of land at the beginning of period $t$.

---

4This assumption is meant to capture the fact that in small open economies loans from foreign investors are most often denominated in a foreign currency.
The right-hand side captures the household’s income. $W_i^t L_i^t$ is the household’s labor income, $R_i^K K_i^t$ is the income derived from renting land to firms, while $S_t R^* B_i^t$ and $R_{t-1} B_i^t$ denote respectively the gross return on investment in foreign and domestic bonds made at time $t - 1$. $\Pi_t$ are the profits received from firms. Finally, the household imports from foreigners the intermediate input $M_i^t$ and sells it to domestic firms. The world price of the intermediate input expressed in the foreign currency is constant and denoted by $P^M$. Hence, $R_i^M - S_t P^M$ is the return in units of the domestic currency that the household receives from purchasing one unit of the imported input from foreign producers and selling it to domestic firms.

A fraction $\phi$ of the intermediate input has to be paid at the start of the period and requires working capital financing. To finance the purchase of the imported input the household obtains a working capital loan from foreign investors at the start of the period and repays it at the end of the same period. I assume that the interest rate on these intra-period loans is zero.\footnote{One could assume that intra-period loans pay an interest rate equal to $R^*$. This alternative formulation would not change in any way the results of the paper.}

Foreign investors restrict loans so that total foreign debt, including both inter-temporal debt in one-period bonds and intra-period loans, does not exceed a fraction $\kappa$ of the foreign currency value of the household’s end of period land holdings

$$\phi P^M M_i^t - B_{t+1}^* \leq \kappa Q^t K_i^t_{t+1}.$$

This constraint ensures that the loan-to-value ratio of domestic households does not exceed the limit $\kappa$. This international collateral constraint is meant to capture in reduced form an environment in which informational and institutional frictions affect the credit relationship between domestic and foreign agents.\footnote{Similar constraints are widely used in the literature on sudden stops. See for example Mendoza (2010).}

A constraint of this form arises if land can be used as collateral to mitigate the frictions on the international credit markets. Domestic bonds are not subject to the collateral constraint since they are not traded by foreign investors.

I introduce nominal rigidities by assuming that each household has to set its nominal wage $W_i^t$ at the very start of the period, before the realization of the productivity shock $z_t$ is known.\footnote{The assumption that wages are set at the start of the period, rather than one period in advance,} Each household acts as a monopolistic supplier of its labor input and sets...
its wage to maximize the expected present discounted value of utility (7), subject to the budget constraint (8) and firms' demand for its labor (6). The optimal wage satisfies

$$-E_{t-1} \left[ U_L(C_t^i, L_t^i) L_t^i \right] = \frac{\sigma - 1}{\sigma} W_t^i E_{t-1} \left[ \frac{U_C(C_t^i, L_t^i)}{S_t} L_t^i \right],$$

(10)

where $U_C(\cdot)$ and $U_L(\cdot)$ denote the derivative of the period utility function with respect to consumption and labor. At the margin, the expected disutility from an increase in labor effort, the left-hand side, is equal to the expected utility from higher revenue, the right-hand side.

Once wages are set, households are willing to satisfy firms' labor demand as long as the real wage, that is the wage expressed in units of the foreign currency, does not fall below the marginal rate of substitution between consumption and leisure

$$\frac{W_t^i}{S_t} \geq - \frac{U_L(C_t^i, L_t^i)}{U_C(C_t^i, L_t^i)}.$$

(11)

Given the pre-set wage and the realization of the productivity shock, each period the household chooses $C_t^i$, $B_{t+1}^i$, $B_{t+1}^i$, $K_{t+1}^i$ and $M_t^i$ to maximize the expected present discounted value of utility (7), subject to the budget constraint (8) and the collateral constraint (9).

The optimality condition for $B_{t+1}^i$ can be written as

$$\frac{U_C(C_t^i, L_t^i)}{S_t} = \beta R_t E_t \left[ \frac{U_C(C_{t+1}^i, L_{t+1}^i)}{S_{t+1}} \right].$$

(12)

The optimal investment in domestic bonds is such that the marginal utility from spending one unit of foreign currency in period $t$ consumption is equal to the expected marginal utility from investing one unit of domestic currency in domestic bonds and consuming the return in period $t+1$.

The optimal choice for $B_{t+1}^i$ is given by

$$U_C(C_t^i, L_t^i) = \beta R_t E_t \left[ U_C(C_{t+1}^i, L_{t+1}^i) \right] + \mu_t^i,$$

(13)

where $\mu_t^i$ is the Lagrange multiplier on the collateral constraint, and by the complementary slackness condition

$$\mu_t^i \left( \frac{\kappa Q_t^i}{S_t} K_{t+1}^i - \phi P^M M_t^i + B_{t+1}^i \right) = 0.$$

(14)

The left-hand side of expression (13) is the marginal utility from spending one unit of foreign currency in period $t$ consumption. If the collateral constraint does not bind reduces significantly the computational costs needed to solve the model numerically.
(\mu^i_t = 0) this is equated to the expected utility from investing one unit of foreign currency in foreign bonds and consuming the return in period \(t+1\). When the collateral constraint binds (\mu^i_t > 0), \(B^i_{t+1}\) is determined by the collateral that the household can offer to foreign investors, as stated by condition (14). In this case, the household is not free to borrow as much as it would like from foreign investors and the marginal utility of period \(t\) consumption is bigger than the expected marginal utility cost of borrowing on the international credit market.

Combining equations (12) and (13) gives

\[
\beta R_t E_t \left[ U_C(C^i_{t+1}, L^i_{t+1}) \frac{S_t}{S_{t+1}} \right] = \beta R^* E_t \left[ U_C(C^i_{t+1}, L^i_{t+1}) \right] + \mu^i_t. \tag{15}
\]

When the collateral constraint is not binding this equation is just the usual uncovered interest parity condition, which rules out arbitrage opportunities between domestic and foreign bonds. However, when \(\mu^i_t > 0\) the uncovered interest parity condition breaks down and the expected return in terms of utility from investing in domestic bonds is greater than the expected utility from investing in foreign bonds. The presence of a spread between the cost of borrowing on the domestic market and the world interest rate in states in which the collateral constraint binds is due to the assumption that only foreign loans enter the collateral constraint. Whether the spread materializes through an increase in the domestic interest rate, a movement of the exchange rate or a combination of both depends on the actions of the monetary authority.

The optimality condition for land \(K^i_{t+1}\) is

\[
\frac{Q_t}{S_t} U_C(C^i_t, L^i_t) = \beta E_t \left[ U_C(C^i_{t+1}, L^i_{t+1}) \frac{R^K_{t+1} + Q_{t+1}}{S_{t+1}} \right] + \frac{Q_t}{S_t} \kappa \mu^i_t. \tag{16}
\]

The left-hand side is the marginal cost in terms of utility of an extra unit of land investment. The right-hand side captures the marginal benefit from increasing the household’s land holdings. The first term is the marginal return in terms of utility of renting a unit of land to firms in period \(t+1\) and selling it at the end of the period. The second term is the value that the household gets from relaxing the collateral constraint by increasing its stock of land.

The last first order condition gives the optimal choice of \(M^i_t\):\n
\[
R^M_t = S_t P^M \left( 1 + \frac{\mu^i_t}{U_C(C^i_t, L^i_t)} \right). \tag{17}
\]
When the collateral constraint does not bind the price at which the intermediate input is sold to domestic firms is equated to its world price expressed in units of the domestic currency. If the collateral constraint binds the amount of intermediate input that the household can import is limited by the value of its collateral. This shows up in the first order condition as an increase in the price of the imported input.

2.3 Equilibrium

The solution is symmetric across households and in equilibrium individual and aggregate per capita variables are identical. For example aggregate consumption per capita $C_t$ is given by

$$C_t = \int_0^1 C^i_t \, di = C^i_t,$$

(18)

where the last equality comes from the fact that each household makes the same choices in equilibrium. Similarly, in equilibrium the aggregate net foreign asset position of the economy $B^*_t$ is such that

$$B^*_t = B^*_{i,t},$$

(19)

and the individual and aggregate wage coincide

$$W_t = W^i_t.$$

(20)

To derive the resource constraint of the economy, notice that since the domestic bond is traded only among domestic households its net supply must be equal to zero, i.e. equilibrium on the domestic bond market requires $B^i_t = 0$ for every $t$. The aggregate stock of land is assumed constant and equal to $K$, so that in equilibrium the households’ net purchases of land must be zero. Using these equilibrium conditions, the expression for firms’ profits (2) and the household’s budget constraint (8) gives the aggregate resource constraint of the economy

$$C_t + B^*_{t+1} = Y_t - P^M M_t + R^* B^*_t.$$

(21)

This expression says that the aggregate expenditure of the economy, the sum of consumption plus investment in foreign bonds, must be equal to aggregate income, which is given by the sum of the gross domestic product ($Y_t - P^M M_t$) plus the gross return on foreign bonds purchased during the previous period.
Finally, market clearing for the factors of production require:

\[ L_t = L_t^i \]  \hspace{1cm} (22) \\
\[ M_t = M_t^i \]  \hspace{1cm} (23) \\
\[ K_t = K_t^1 = K. \]  \hspace{1cm} (24)

We are now ready to define a rational expectations equilibrium as a set of stochastic processes \( \{C_t, C_{t+1}, B_{t+1}^*, L_t, L_t^i, M_t, M_t^i, K_{t+1}, K_t^1, Y_t, W_t^i, W_t, R_t^M, R_t^K, Q_t, \mu_t, S_t\}_{t=0}^\infty \) satisfying (1), (3)-(5), (10)-(14) and (16)-(24), given the exogenous process \( \{z_t\}_{t=0}^\infty \), the central bank’s policy \( \{R_t\}_{t=0}^\infty \) and initial conditions \( B_0^* \) and \( z_{-1} \).

2.4 Central bank and exchange rate policy

The central bank uses the interest rate on domestic loans as the monetary policy instrument. I focus the analysis on the case in which the central bank credibly commits to a policy rule at the start of period 0, before period 0 wages are set, and then sticks to it forever. The general form of the interest rate rule can be written as

\[ R_t = R^* \left( \frac{W_t}{W_{t-1}} \right)^{\xi_W} \left( \frac{S_t}{\bar{S}} \right)^{\xi_S}. \]  \hspace{1cm} (25)

The parameter \( \xi_W \) allows the central bank to control the wage inflation rate. The parameter \( \xi_S \) controls the response of the interest rate to movements of the exchange rate around a target level \( \bar{S} \).

I consider three policy rules. First, I consider a policy of strict wage inflation targeting in which \( \xi_W \to \infty \). Under this rule, the central bank credibly commits to a policy of zero nominal wage inflation. To achieve this goal, the central bank acts so as to replicate the flexible wage equilibrium in any date and state. In this way, households lack an incentive to change the nominal wage and keep their wages constant in every period. This rule offsets all the distortions coming from nominal rigidities and captures the traditional price stability objective of central banks.

Second, I consider a policy of flexible exchange rate targeting in which \( \xi_S > 0 \) and \( \xi_W = 0 \). By implementing this policy the central bank provides a nominal anchor to the

\[ z_{-1} \] has to be included among the initial conditions because at the beginning of each period \( t \) households use the value of productivity in \( t - 1 \) to form expectations in the wage setting equation (10).
economy, while allowing some flexibility in the exchange rate. This rule corresponds to a policy of flexible price level targeting in closed-economy models and it represents a simple alternative to targeting wage inflation.\footnote{The results would be very similar if I assumed that the central rate was targeting a depreciation rate, rather than a level for the exchange rate.}

The third regime considered is a perfectly credible currency peg in which $\xi_s \to \infty$. This policy is interesting because it captures the case of dollarized countries or of countries belonging to a monetary union. Moreover it will be used to calibrate the model.

### 2.5 The Fisherian deflation mechanism

Before proceeding to the numerical results, it is useful to build some intuition about the financial amplification mechanism at the heart of the model. To this end, in this section I present a brief partial equilibrium analysis that provides insights about the ability of the model to generate crisis events.

Let’s start by combining equations (16) and (13) to write the equilibrium real price of land as

$$\frac{Q_t}{S_t} = \frac{\beta E_t \left[ U_C(C_{t+1}, L_{t+1}) \frac{R_{t+1}^K + Q_{t+1}}{S_{t+1}} \right]}{(1 - \kappa) U_C(C_t, L_t) + \kappa \beta R^* E_t \left[ U_C(C_{t+1}, L_{t+1}) \right]}.$$ 

Since $U_C(C_t, L_t)$ is decreasing in $C_t$, this equation gives a positive relationship between the real price of land and current consumption. This is due to the households’ desire to smooth consumption over time, which implies that the rate at which future returns from land holdings are discounted is decreasing in current consumption. I will refer to this relationship as the $QQ$ curve.

In states in which the collateral constraint binds another positive relationship between $Q_t/S_t$ and $C_t$ arises in equilibrium. To see this combine the resource constraint (21) and the binding collateral constraint (9) to obtain

$$C_t = z_t F(L_t, M_t, K_t) - (1 + \phi) M^M + R^* B_t + \frac{Q_t}{S_t} K.$$ 

To gain intuition about this equation, consider that an increase in the price of land corresponds to an increase in the value of collateral that domestic households can offer to foreign investors. If households are borrowing constrained they will respond to the increase in the value of their collateral by borrowing more to finance current consumption.
Figure 1: Equilibrium with Fisherian Deflation

Hence the positive relationship between $Q_t/S_t$ and $C_t$. I will call this relationship the $RR$ curve.

Figure 1 shows how these two relationships give rise to a financial amplification mechanism based on Fisher’s debt deflation. The figure depicts the effects of a negative TFP shock, that is a fall in $z_t$, in states in which the collateral constraint binds. The initial equilibrium is at point A. The negative TFP shock makes the $RR$ curve shift left to $RR'$. In absence of financial amplification households would be forced to reduce their consumption, but this would not affect the value of their collateral and the new equilibrium would correspond to point $B$.

However, the reduction in consumption generates a fall in the demand for land and in its price which tightens the collateral constraint. Households are then forced to decrease their foreign borrowing and further cut their consumption. This gives rise to a vicious cycle of falls in consumption, land price and capital inflows that amplifies the impact of the initial shock. The result is that the Fisherian deflation mechanism moves the economy to the equilibrium depicted by point $C$, featuring depressed values of consumption and land price.

This simple partial equilibrium analysis shows how the presence of the collateral constraint can be a powerful source of nonlinearity in the response of the economy to exogenous shocks. The numerical results presented in the next section illustrate how the occasionally binding collateral constraint allows the model to reproduce salient features of crisis events in open economies and how it affects the outcome of monetary policy.
decisions.

3 Quantitative analysis

The model cannot be solved analytically and I analyze its properties using numerical simulations. A period in the model corresponds to one year, in accordance with the empirical evidence suggesting that wage contracts are set on average once a year.\textsuperscript{10} The values of the parameters are chosen using annual data from five small open economies belonging to the Eurozone periphery: Greece, Ireland, Italy, Portugal and Spain. For each country the period considered starts with the year of adoption of the Euro and ends in 2010.\textsuperscript{11} I focus on this sample because it features a homogeneous exchange rate policy and because these countries are currently experiencing a period of financial turmoil. The calibration strategy consists in choosing values for the parameters so that the model with monetary policy characterized by a currency peg matches some key aspects of the countries in the sample.

3.1 Functional forms and parameterization

The functional forms for preferences and technology are:

\[ U(C, L) = \frac{(C - \frac{L\omega}{\omega})^{1-\gamma} - 1}{1 - \gamma}, \]

\[ F(L, M, K) = L^{\alpha_L} M^{\alpha_M} K^{\alpha_K}, \]

with \( \omega > 1, \gamma > 1, \alpha_L \geq 0, \alpha_M \geq 0, \alpha_K \geq 0 \) and \( \alpha_L + \alpha_M + \alpha_K \leq 1 \). The period utility function takes the form introduced by Greenwood et al. (1988). This type of preferences eliminate the wealth effect on labor supply and are widely used in the quantitative literature on small open economies as they are able to reproduce small open economies’ business cycles better than separable preferences.\textsuperscript{12} The production function is the standard Cobb-Douglas aggregator.

\textsuperscript{10}See Olivei and Tenreyro (2010).
\textsuperscript{11}For Ireland, Italy, Portugal and Spain the period considered is 1999-2010, while for Greece it is 2001-2010. Unless otherwise stated, the data come from Eurostat and from the World Development Indicators.
\textsuperscript{12}See Mendoza (1991) and Correia et al. (1995).
Table 1: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk aversion</td>
<td>$\gamma = 2$</td>
<td>Standard DSGE value</td>
</tr>
<tr>
<td>Frisch elasticity of labor supply</td>
<td>$1/(\omega - 1) = 1$</td>
<td>Kimball and Shapiro (2008)</td>
</tr>
<tr>
<td>Elasticity of demand for labor</td>
<td>$\sigma = 3$</td>
<td>Smets and Wouters (2003)</td>
</tr>
<tr>
<td>World interest rate</td>
<td>$R^* = 1.03$</td>
<td>Standard DSGE value</td>
</tr>
<tr>
<td>Stock of land</td>
<td>$K = 1$</td>
<td>Normalization</td>
</tr>
<tr>
<td>World price of imported input</td>
<td>$P^M = 1$</td>
<td>Normalization</td>
</tr>
<tr>
<td>Imported input share in output</td>
<td>$\alpha_M = 0.127$</td>
<td>Sample average</td>
</tr>
<tr>
<td>Labor share in output</td>
<td>$\alpha_L = 0.558$</td>
<td>Labor share in GDP = 64%</td>
</tr>
<tr>
<td>Land share in output</td>
<td>$\alpha_K = 0.044$</td>
<td>Bianchi and Mendoza (2010)</td>
</tr>
<tr>
<td>Discount factor</td>
<td>$\beta = 0.958$</td>
<td>NFA/GDP = −0.41%</td>
</tr>
<tr>
<td>TFP process</td>
<td>$\sigma_z = 0.0155, \rho = 0.9$</td>
<td>Std. dev. and autoc. of GDP</td>
</tr>
<tr>
<td>Credit coefficient</td>
<td>$\kappa = 0.38$</td>
<td>Frequency of crises = 5.5%</td>
</tr>
<tr>
<td>Working capital coefficient</td>
<td>$\phi = 0.42$</td>
<td>Working capital/GDP = 6%</td>
</tr>
<tr>
<td>Coefficient on interest rate rule</td>
<td>$\xi_S = 1.5$</td>
<td>Standard value</td>
</tr>
<tr>
<td>Exchange rate target</td>
<td>$\bar{S} = 1$</td>
<td>Normalization</td>
</tr>
</tbody>
</table>

The risk aversion parameter is set at $\gamma = 2$, a standard value in the real business cycle literature. The Frisch elasticity of labor supply $1/(\omega - 1)$ is set equal to 1, in line with evidence by Kimball and Shapiro (2008). The parameter $\sigma$ is set to 3 as in Smets and Wouters (2003). The world real interest rate is set to $R^* = 1.03$, a reasonable value for the interest rate charged to small open economies during tranquil times. The stock of land $K$ and the price of the intermediate input $P^M$ are both normalized to one without loss of generality.

The measure of gross output ($Y$) in the data consistent with the one in the model is the sum of GDP plus imported inputs. The average share of imported inputs in gross output in the sample considered is 0.127, hence $\alpha_M = 0.127$. I assume a labor share in GDP of 0.64 and so $\alpha_L = 0.64(1 - \alpha_M) = 0.558$. I set $\alpha_K = 0.044$ following Bianchi and Mendoza (2010). The discount factor $\beta$ is set to 0.958 to match an average net foreign assets-to-GDP ratio in the model with a currency peg of −0.41.\textsuperscript{13} This is the average net

\textsuperscript{13}In the model the net foreign assets-to-GDP ratio is $B^t_{t+1}/(Y_t - P^M M_t)$.
foreign assets-to-GDP ratio across the five sample countries during the period since Euro adoption up to 2007, computed using data from Lane and Milesi-Ferretti (2007).

The productivity shock $z_t$ follows a log-normal AR(1) process $\log(z_t) = \rho \log(z_{t-1}) + \eta_t$. This process is approximated with the quadrature procedure of Tauchen and Hussey (1991) using 5 nodes. The first order autocorrelation $\rho$ and the standard deviation of the productivity shock $\sigma_z$ are set so that the model economy under a peg reproduces the average across the five sample countries of the corresponding moments for the cyclical component of GDP per capita (which are respectively 3.1 percent and 0.65). This procedure yields $\rho = 0.9$ and $\sigma_z = 0.0155$.

The parameter $\kappa$ is set so that the unconditional probability of experiencing a crisis in the currency peg version of the model economy is 5.5 percent, in line with the observed frequency of sudden stops in the cross-country data set of Eichengreen et al. (2006). To be consistent with their definition, a crisis in the model occurs when the credit constraint binds and this leads to an improvement in the current account that exceeds one standard deviation. This calibration results in a value of $\kappa$ equal to 0.38. The fraction of imported inputs that has to be paid in advance $\phi$ is set to 0.42 to match an average working capital-to-GDP ratio of 6 percent. This is the same target as in Mendoza and Yue (2011).

The exponent on the exchange rate in the flexible exchange rate targeting rule $\xi_S$ is set to 1.5, a value commonly used to capture the response of policy rates to inflation or to deviations of the price level from its target. I later show how the main results of the paper hold true for a variety of values of this coefficient. Finally, the exchange rate target $\bar{S}$ is normalized to 1.

### 3.2 Debt dynamics

The solution is approximated numerically by applying the time iteration method proposed by Coleman (1990) over a discretized state space. This global solution method preserves the nonlinearities induced by the occasionally binding collateral constraint. The state of

\footnote{More precisely, for the five countries in the sample I computed the logarithm of per capita GDP during the period 1960-2010 and removed a smooth trend using the Hodrick-Prescott filter with a smoothing parameter of 100. I then computed for each country the standard deviation and the first order autocorrelation of the detrended series, restricting the sample to the years since the adoption of the Euro. The average standard deviation across the countries in the sample is 3.1 percent, while the average first order autocorrelation is 0.65.}
the economy in period $t \geq 0$ is given by the triplet $\{B^*_t, z_t, z_{t-1}\}$. The previous period productivity shock $z_{t-1}$ must be included among the state variables because it is used by households at the start of the period to form the expectations needed to set their wages. The endogenous state $B^*_t$ is discretized using 700 equally spaced points.

To understand how the model is able to generate both tranquil and crisis times, it is instructive to look at the households’ foreign borrowing decision rules. Figure 2 shows the optimal choice of next period foreign bonds as a function of the current holdings of foreign bonds for two different realizations of the TFP shock.15

The Fisherian deflation mechanism generates non-monotonic policy functions. The point at which the bond decision rules switch slope corresponds to the value of current foreign bond holdings for which the collateral constraint is satisfied with equality but does not bind. To the right of this point the collateral constraint is not binding and the policy function is upward sloped. When the collateral constraint is not binding domestic agents’ investment in foreign bonds is increasing in the value of their wealth at the start of the period, as it is standard in models in which the current account is used to smooth

15The decision rule depicted by the solid line is conditional on $z_{t-1}$ being equal to the mean value of TFP and $z_t$ being two standard deviations below mean, while the decision rule represented by the dashed line is conditional on $z_{t-1}$ and $z_t$ being both equal to the mean. Both decision rules refer to agents living under a currency peg. The decision rules for the other two regimes exhibit similar shapes.
consumption over time. To the left of the kink the collateral constraint binds and the policy function becomes downward sloped. This happens because, for a given choice of next period foreign bonds, both consumption and the price of land are increasing in the stock of foreign bonds held by the households at the start of the period. Hence, a decrease in the start-of-period holdings of foreign bonds is associated with a fall in the value of collateral and, if agents are borrowing constrained, with a decline in foreign debt. This gives rise to a negative relationship between current and future bond holdings in states in which the collateral constraint is binding.

Figure 2 also illustrates the process through which the economy enters a crisis. Point A corresponds to a steady state in which the TFP shock is equal to its mean value. At this point, the stock of foreign debt accumulated by domestic agents is big enough to expose the economy to the risk of a sudden stop in the event of a negative TFP shock. Facing a negative TFP shock households try to smooth the impact on consumption by increasing their foreign borrowing. This makes the collateral constraint bind and triggers the Fisherian deflation mechanism which generates a drop in the price of land and in the value of collateral pledgeable to foreign investors. Domestic agents are then forced to cut their foreign borrowing and the economy experiences a sudden stop, that is a drastic decrease in capital inflows. For instance, a negative two-standard-deviations TFP shock causes a fall in foreign borrowing which moves the economy to the equilibrium depicted by point B. After the crisis, domestic agents resume their process of debt accumulation until the economy becomes again vulnerable to the risk of a sudden stop.

Another important feature of the model that can be inferred from the figure is that whether a negative shock makes the collateral constraint bind depends on the stock of foreign assets owned by domestic households at the start of the period. The figure shows that for sufficiently high levels of foreign assets, corresponding to the region to the right of the kink in the ‘low TFP’ line, a negative two-standard-deviations TFP shock does not make the collateral constraint bind. Conversely, for sufficiently low levels of foreign assets, the region to the left of the kink in the ‘low TFP’ line, a negative two-standard-deviations TFP shock causes the collateral constraint to bind and triggers the financial amplification mechanism.
3.3 Crisis event analysis

This section describes how the exchange rate regime affects the behavior of the economy during crises. To compare the response of economies with different exchange rate regimes to a typical crisis event I use the following procedure. I simulate the model economy under a currency peg for 100,000 periods, drop the first 1,000 periods and then collect all the crisis events, that is periods in which the collateral constraint binds and the current account-to-GDP ratio exceeds one standard deviation. Then I construct five year windows centered around each crisis episode and calculate the median productivity shock across all of these event windows in each year \( t - 2 \) to \( t + 2 \), the median holdings of foreign bonds at \( t - 2 \) and the median productivity shock at \( t - 3 \). Finally, I feed this sequence of shocks and initial values for the state variables to the decision rules of each model economy and compute the corresponding endogenous variables.

The results are shown in figure 3. All the variables are in percentage deviations from their ergodic mean except for the current account-to-GDP ratio, the exchange rate and the policy rate. The policy rate corresponds to the interest rate on domestic bonds, deflated by the expected exchange rate depreciation.

Let us start by describing the crisis dynamics under a currency peg, which correspond to the solid lines in figure 3. Initially the economy is on a steady state in which the productivity shock is equal to its mean value, the collateral constraint is not binding, the policy rate is equal to the world interest rate and the net foreign assets are constant. In period \( t \) the economy is hit by a negative TFP shock, the collateral constraint becomes binding and the economy enters a crisis.

During the crisis GDP drops by more than 5 percentage points below its ergodic mean. This happens because of three effects. First, the negative TFP shock induces a fall in output for a given amount of factors of production employed. Second, there is an inefficient fall in the imports of the intermediate input because households’ access to working capital loans is limited by the collateral constraint. Third, the combination of nominal wage rigidities and fixed exchange rate prevents real wages from adjusting downward to accommodate the fall in firms’ labor demand caused by the two previous effects. Because of this, employment falls by nearly 6 percentage points below its ergodic mean.

Consumption falls by more than GDP to almost 8 percentage points below trend. This
Figure 3: Crisis event analysis
is due to the fact that the binding collateral constraint prevents households from using the current account to smooth the impact on consumption of the fall in GDP. Indeed, the economy experiences a decrease in capital inflows which translates into a sharp rise in the current account-to-GDP ratio. Moreover, the central bank is forced to raise the policy rate above the world interest rate in order to defend the peg. Finally, the Fisherian deflation mechanism generates a fall in the foreign currency price of land of more than 8 percentage points.

During the fourth period productivity remains below trend, but output and consumption recover because of two effects. First the sudden stop causes a sharp decrease in foreign debt, which relaxes the collateral constraint so that it is no longer binding. This allows households to increase their imports of the intermediate input and of the consumption good, thus having a positive effect on output and aggregate consumption. Second, since the TFP shock is persistent after the first period of productivity below trend households revise downward their expectations of future labor demand and lower their wages accordingly. The drop in wages helps the recovery with his positive impact on employment and GDP.

The dashed lines in figure 3 illustrate the behavior of the economy when the central bank implements a policy of strict wage inflation targeting. The economy with wage inflation targeting and the currency peg exhibit similar dynamics in the two years before the crisis. However, when in period $t$ the crisis hits the behavior of the two economies diverges.

Under wage inflation targeting the central bank lets the exchange rate depreciate during the sudden stop, in order to reduce real wages in response to the fall in firms’ demand for labor. This affects the economy through several channels. First, the decrease in the cost of labor pushes firms to increase employment and this has a positive impact on output. Moreover, the increase in output allows households to consume more. This in turn sustains the demand for land and its price and relaxes households’ collateral constraints. Finally, due to the assumption of liability dollarization the depreciation reduces the value for foreign investors of a unit of domestic currency and this tightens domestic agents’ borrowing limit. In equilibrium the positive impact on the price of land prevails and the depreciation increases the value of the collateral pledgeable to foreign investors. Indeed, the depreciation interacts with the financial amplification mechanism.
and produces a virtuous cycle of increases in consumption, land price and capital inflows.

The outcome is that under wage inflation targeting the impact of the sudden stop on output, consumption and land price is milder than under the currency peg. GDP falls by only 2 percent below its ergodic mean, consumption falls by 5 percent below its mean and the price of land falls by 7 percentage points below its mean. The policy rate spikes up during the crisis, but the increase is smaller than in the case of the currency peg.

The dotted lines show the behavior of the economy when the monetary authority follows a policy of flexible exchange rate targeting. Under this regime the exchange rate depreciates during the sudden stop by more than under wage inflation targeting, while the policy rate increases by less. The reduction in the cost of labor is sufficiently big so that employment rises above trend during the crisis and output barely falls below its ergodic mean. Also, flexible exchange rate targeting exhibits the smallest drops in consumption, which falls by just 2 percent below trend, and land price, which falls by nearly 5 percent below its ergodic mean, compared to the other two regimes.

The event analysis suggests that the flexible exchange rate targeting rule fares better than the other two rules in stabilizing output, consumption and the price of land during sudden stops. Figure 4 further illustrates this point by showing the ergodic cumulative probability distribution of the response of consumption and land price to sudden stops under the three exchange rate policies, expressed as percentage deviations from their ergodic means.\textsuperscript{16} The figure shows that both the economy with wage inflation targeting

\textsuperscript{16}To construct this figure I performed for each model economy a 100000-period long simulation,
and the currency peg assign non-trivial probabilities, respectively 20 percent and 90 percent, to consumption drops of more than 6 percent, the maximum fall in consumption experienced by the economy with flexible exchange rate targeting. Similarly, the economy with flexible exchange rate targeting assigns a negligible probability to falls in land price below 10 percent, while this happens with almost a 20 percent probability under wage inflation targeting and with more than a 30 percent probability under a peg.

### 3.4 Debt accumulation and precautionary savings

The exchange rate regime not only affects the economy during sudden stops, but it also has an impact on debt accumulation during tranquil times and on the probability that the economy slides into a crisis.

Figure 5 displays the ergodic cumulative probability distribution of foreign bond holdings for the three policy rules considered. Both the economy with wage inflation targeting and the one with flexible exchange rate targeting tend to reach higher levels of foreign debt than the peg. For instance, the probability of experiencing levels of foreign debt higher than the maximum attained by the currency peg is around 30 percent both for

---

*dropped the first 1000 periods and collected all the crisis events. The figure plots for each economy the cumulative probability distribution function of the percentage deviations of consumption and land price from their ergodic means conditional on the economy being in a crisis.*
the economy with wage inflation targeting and for the one with flexible exchange rate targeting.

The reluctance of agents living under a currency peg to reach high levels of foreign debt can be explained with the fact that a higher level of foreign debt increases the chances that a negative shock makes the collateral constraint bind. Since episodes of binding collateral constraint are more disruptive under a currency peg than under the two other monetary regimes, households living under a peg take smaller levels of foreign debt to reduce the risk of entering a crisis. Consistent with this, the economy with flexible exchange rate targeting, which is the regime under which crises have the mildest effects, reaches very high levels of foreign debt more often than the economy with wage inflation targeting.

This can also be seen by looking at precautionary savings, defined as the difference between the borrowing limit and foreign debt. Table 2 shows that the peg has the highest average precautionary savings-to-GDP ratio (1.4 percent), followed by the economy with wage inflation targeting (0.7 percent) and by the economy with the flexible exchange rate targeting rule (0.5 percent). This indicates the existence of a positive relationship between the severity of crises and the amount of precautionary savings that agents accumulate.

By accumulating precautionary savings households influence the probability that the economy enters a crisis. Table 2 shows that the unconditional probability of entering a crisis is 5.5 percent for the economy with a fixed exchange rate, while the crisis probability

---

### Table 2: Precautionary savings and crisis probability

<table>
<thead>
<tr>
<th></th>
<th>Wage inflation targeting</th>
<th>Flexible exchange rate targeting</th>
<th>Currency peg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precautionary savings/GDP</td>
<td>0.7</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Crisis probability</td>
<td>8.3</td>
<td>9.3</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Note: Precautionary savings are defined as the difference between the collateral value of land and total foreign debt, \( \kappa K_t / S_t + B_{t+1}^* - \phi P M_t \). A crisis event is defined as a period in which the collateral constraint binds and the current account-to-GDP ratio exceeds one standard deviation.

Formally, precautionary savings at time \( t \) are defined as \( \kappa K_t / S_t + B_{t+1}^* - \phi P M_t \).
Table 3: Long Run Moments

<table>
<thead>
<tr>
<th></th>
<th>Standard deviation</th>
<th>Correlation with GDP</th>
<th>Autocorrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WIT</td>
<td>FERT</td>
<td>PEG</td>
</tr>
<tr>
<td>GDP</td>
<td>2.47</td>
<td>2.51</td>
<td>3.14</td>
</tr>
<tr>
<td>Consumption</td>
<td>2.80</td>
<td>2.60</td>
<td>3.60</td>
</tr>
<tr>
<td>Trade balance/GDP</td>
<td>0.78</td>
<td>0.60</td>
<td>0.89</td>
</tr>
<tr>
<td>Employment</td>
<td>1.28</td>
<td>1.61</td>
<td>2.62</td>
</tr>
<tr>
<td>Leverage</td>
<td>1.48</td>
<td>1.32</td>
<td>2.29</td>
</tr>
<tr>
<td>Land price</td>
<td>3.62</td>
<td>3.29</td>
<td>4.11</td>
</tr>
<tr>
<td>Exchange rate</td>
<td>1.28</td>
<td>0.96</td>
<td>0.00</td>
</tr>
<tr>
<td>Policy rate</td>
<td>3.94</td>
<td>2.54</td>
<td>5.36</td>
</tr>
</tbody>
</table>

Note: WIT stands for the economy with strict wage inflation targeting, FERT stands for the flexible exchange rate targeting rule and PEG stands for the currency peg. Autocorrelation refers to the first-order autocorrelation. Leverage is defined as \((-B_t^{t+1} + \phi P^t M_t)S_t/KQ_t\). The policy rate is the domestic nominal interest rate \(R_t\), deflated by the expected exchange rate depreciation.

is 8.3 percent for the economy with wage inflation targeting and 9.3 for the economy with flexible exchange rate targeting.

3.5 Long run moments

This section documents how the monetary policy regime affects the business cycle moments of the economy. Table 3 displays the long-run business cycle moments for the three policies considered, computed using each economy’s ergodic distribution. The economy with the currency peg exhibits the highest business cycle variability in GDP, labor and consumption, signaling the role of shock absorber that flexible exchange rates perform in the model.\(^{18}\) The economy with wage inflation targeting is characterized by lower volatility in GDP and labor than the economy with flexible exchange rate targeting, but by higher volatility in consumption. This can be explained with the fact that the flexible exchange rate targeting rule does a better job in insulating consumption from the effect of crises.

The model produces a higher variability in GDP than in consumption, a typical feature

\(^{18}\)For empirical evidence on the shock-absorbing role of flexible exchange rates see Broda (2004).
of emerging markets subject to the risk of financial crises highlighted by Neumeyer and Perri (2005). This is due to the fact that the Fisherian deflation mechanism interferes with households’ desire to smooth consumption over time. This can be seen by looking at the cyclicality of the trade balance-to-GDP ratio. In absence of frictions in the credit market the trade balance would be procyclical, because households would smooth the impact of productivity shocks on consumption by decreasing net exports during periods of low productivity. Instead, the binding collateral constraint forces agents to reduce their foreign borrowing, and hence to increase their net exports, when productivity is low generating a countercyclical trade balance-to-GDP ratio. By looking at the cyclicality of the trade balance we can see that consumption smoothing works worst under the peg, which has the most negative cyclicality, while the flexible exchange rate targeting rule is the regime that guarantees better consumption smoothing, since its trade balance-to-GDP ratio is mildly procyclical.

The Fisherian deflation mechanism also affects the business cycle moments of land price and leverage.\(^{19}\) Land price is much more volatile than GDP and strongly procyclical under the three regimes. The flexible exchange rate targeting is the regime with the lowest land price volatility, while the peg exhibits the highest volatility in land price. Also leverage is most volatile under the peg, while the lowest volatility is attained under the flexible exchange rate targeting rule. Leverage is countercyclical under the three policy regimes, due to the fact that when the collateral constraint binds, and thus when leverage has reached its maximum \(\kappa\), GDP tends to fall.

The exchange rate is more volatile under the wage inflation targeting regime, compared to the economy with flexible exchange rate targeting. Both regimes exhibit small volatilities in the exchange rate compared to data from small open economies, in accordance with the well known difficulty of DSGE models in accounting for the volatility of nominal exchange rates (see for example Kollmann (2002) and Gertler et al. (2007)). In both regimes the exchange rate is countercyclical due to the fact that it tends to depreciate following bad productivity shocks. While the first-order autocorrelation of the exchange rate is strongly positive under a policy of wage inflation targeting, it becomes mildly negative when the central bank follows a policy of flexible exchange rate targeting.

The policy rate tends to be more volatile than GDP, and the highest policy rate volatil-

\(^{19}\)The leverage ratio is given by \((-B_{t+1}^* + \phi P^M M_t)S_t/KQ_t\).
ity is attained under the peg. Interestingly, the model generates countercyclical policy rates, because crises are associated with spikes in the domestic interest rate. The flexible exchange rate targeting rule is the regime that guarantees the lowest countercyclicality of the policy rate.

3.6 Welfare

This section compares the welfare performance of the three monetary regimes considered. I compute the welfare gains of moving from the policy regime \( r \) to regime \( s \) as the proportional increase in consumption for all possible future histories that households living under regime \( r \) must receive in order to be indifferent between remaining in regime \( r \) and switching to regime \( s \). Formally, the welfare gain \( \eta \) at a state \((B_0, z_{-1})\) is defined as

\[
E_0 \left[ \sum_{t=0}^{\infty} \beta^t U(\left(1 + \eta(B_0, z_{-1})\right), L_t^r) \right] = E_0 \left[ \sum_{t=0}^{\infty} \beta^t U(C_t^s, L_t^s) \right],
\]

where the superscripts \( r \) and \( s \) denote allocations in the economy with the corresponding policy regime. Since the central bank commits to a regime at the start of period 0, before wages are set and the TFP shock is known, I compute the welfare compensation \( \eta \) contingent on the initial stock of foreign bonds \( B_0 \) and on the past TFP shock \( z_{-1} \). Importantly, this welfare measure takes into account the impact on welfare of the transition to the steady state implied by the new policy.

I start by showing how the presence of the Fisherian deflation mechanism affects the welfare ranking between the strict wage inflation targeting and the flexible exchange rate targeting rule. To this end, I compute the welfare gains of moving from a policy of wage inflation targeting to the flexible exchange rate targeting rule both for the benchmark model, in which the Fisherian deflation channel is present, and for a version of the model in which the collateral constraint (9) is replaced by

\[
\phi \alpha^M M_t^i - B_{t+1}^{ni} \leq \kappa \bar{Q} K_{t+1}^i,
\]

where \( \bar{Q} \) is a constant.\(^{20}\) In this case households are subject to a fixed borrowing limit, there is no financial amplification and the economy never experiences a financial crisis.

\(^{20}\)In the numerical simulations \( \bar{Q} \) is set equal to the average price of land in the benchmark model with a currency peg.
Figure 6: Welfare gains of switching from wage inflation targeting to flexible exchange rate targeting

Figure 6 plots the welfare gains of moving from wage inflation targeting to the flexible exchange rate targeting rule as a function of $B^*_0$, conditional on $z_{-1}$ being equal to $E(z)$.\footnote{The welfare gains for other values of $z_{-1}$ have similar shapes.} The dashed line refers to the economy with a fixed borrowing limit. Absent the Fisherian deflation channel, a policy of wage inflation targeting delivers higher welfare than targeting the exchange rate for any initial state of the world. This happens because with a fixed borrowing limit there are only two sources of inefficiency. First, on average production is inefficiently low due to the presence of monopolistic competition in the labor market. Second, the assumption of nominal wage stickiness may lead to inefficient wedges between the wage rate and the marginal rate of substitution between consumption and leisure. These two sources of inefficiency are standard in monetary economics and we know that a policy that corrects for nominal rigidities and replicates the equilibrium with flexible wages is close to the optimal policy in this setting.

The Fisherian deflation mechanism introduces another source of inefficiency, based on a pecuniary externality. Atomistic households do not internalize the effect of their actions on the price of land and thus on the value of their collateral. A benevolent social
planner that internalizes the impact of its decisions on prices has an incentive to sustain the price of land in states in which the collateral constraint binds, in order to increase the value of the collateral pledgeable to foreign investors. This creates an incentive for the central bank to deviate from its traditional objective of pursuing price stability and to adopt policies that sustain households’ access to the international credit markets during crisis times, by mitigating the fall in the price of land in states in which the collateral constraint binds.

The relevance of this source of inefficiency is highlighted by the solid line in figure 6, which displays the welfare gains of moving from wage inflation targeting to the flexible exchange rate targeting rule for the benchmark economy. The figure shows that once the Fisherian deflation mechanism is introduced the welfare ranking between a policy of wage inflation targeting and a policy of flexible exchange rate targeting crucially depends on the initial stock of foreign assets owned by domestic households. For high levels of initial foreign assets, corresponding to low initial foreign debt, the wage inflation targeting rule delivers higher welfare gains. This happens because a policy of targeting wage inflation does a good job at managing normal business cycle fluctuations. If the economy starts with a high stock of net foreign assets the probability of a future crisis is small and so welfare is mostly affected by business cycle fluctuations.

As the initial stock of net foreign assets decreases the welfare gains of sticking to the wage inflation targeting rule diminish until adopting the flexible exchange rate targeting rule becomes the preferred option. This happens because a policy of flexible exchange rate targeting does a better job at mitigating the fall in the price of land and at granting access to international credit during crisis events, compared to a policy of targeting wage inflation. Lower foreign assets are associated with higher probability of entering a crisis in the future and so households living in an economy with a low stock of net foreign assets attach more value to the good crisis management properties of the flexible exchange rate targeting rule. The gains from adopting the flexible exchange rate targeting rule become significantly high for very low levels of initial net foreign assets, because these are the states of the world in which a negative TFP shock triggers a financial crisis.

In the stochastic steady state, the average welfare gains of moving from a policy of strict wage inflation targeting to the flexible exchange rate targeting rule are positive but small, about 0.007 percentage points of permanent consumption. On the one hand, this
can be explained with the fact that the gains of adopting a policy of flexible exchange rate targeting are concentrated in states of the world in which the collateral constraint binds. Due to the accumulation of precautionary savings this happens with a small probability in steady state. On the other hand, this finding is in line with Lucas’ result on the small welfare costs of business cycle fluctuations in models with CRRA utility, trend-stationary income and no idiosyncratic uncertainty.\footnote{Adding an endogenous growth process as in Barlevy (2004) or allowing for heterogenous agents as in Krusell et al. (2009) is likely to increase the welfare differences between the two regimes.}

Figure 7 shows the welfare gains of moving from wage inflation targeting to a currency peg, again as a function of $B_0^*$ and conditional on $z_{-1}$ being equal to $E(z)$. The figure indicates that a policy of strict wage inflation targeting is preferred to a currency peg for both versions of the model and for any value of initial net foreign assets. This suggests that the peg does a poor job in managing both normal business cycle fluctuations and crisis events. In the benchmark version of the model, lower initial net foreign assets are associated with higher welfare costs from pegging the exchange rate. This is due to the fact that the currency peg amplifies the fall in the price of land and worsens households

![Figure 7: Welfare gains of switching from wage inflation targeting to currency peg](image-url)
access to international credit during crises.\textsuperscript{23}

Considering the stochastic steady state, the average welfare losses from moving from a policy of strict wage inflation targeting to a peg are small, around 0.041 percentage points of permanent consumption. However, compared to the welfare gains of moving to a policy of flexible exchange rate targeting the welfare costs of adopting a currency peg are significantly larger.

### 3.7 Robustness checks

TO BE WRITTEN

### 4 Conclusion

This paper has examined the performance of alternative monetary policy rules in a small open economy model with an occasionally binding collateral constraint that limits access to foreign credit and with nominal wage rigidities. One key finding is that the presence of financial frictions introduces a trade-off between price and financial stability. For low levels of external debt the probability of a future crisis is small and a policy that eliminates the distortions coming from nominal rigidities by targeting wage inflation is the best rule. For high levels of external debt the probability of a future crisis is high and targeting wage inflation is dominated by a flexible exchange rate targeting rule, because the latter policy does a better job in mitigating the fall in output, consumption and capital inflows during crisis events. In contrast, pegging the exchange rate is always welfare dominated by the wage inflation targeting rule. A second key finding is that the exchange rate regime affects both the behavior of the economy during crisis events and the probability that the economy enters a crisis, through its impact on debt accumulation during tranquil times. The more the monetary policy regime mitigates the impact of crises on output and consumption, the more private agents engage in foreign debt accumulation during tranquil times and the higher is the probability of experiencing a crisis.

\textsuperscript{23}For very high levels of debt the welfare losses of moving from wage inflation targeting to a peg become decreasing in the initial stock of debt. Presumably this happens because very high initial levels of debt are associated with a high probability of a severe crisis generating a sharp deleveraging that reduces significantly the probability of entering a crisis again in the future.
The paper represents a first step in the analysis of monetary policy in dynamic general equilibrium models featuring tranquil and crisis times. The model is kept voluntarily simple to reduce the computational complexities involved by the derivation of a global numerical solution. An interesting area for future research would be to extend the model in order to make it more suitable to deliver quantitative results. Two possible extensions are the inclusion of endogenous capital accumulation and of a dynamic wage-setting process.

References


