Information Spillovers in Asset Markets with Correlated Values

Vladimir Asriyan∗, William Fuchs†, and Brett Green‡

February 14, 2015

Preliminary and Incomplete Draft.

Abstract

We study the effect of information spillovers and transparency in a dynamic setting with adverse selection and correlated asset values. A trade (or lack thereof) by one seller can provide information about the quality of other assets in the market. In equilibrium, the information content of this trading behavior is endogenously determined. We show that this endogeneity of information leads to multiple equilibria when the correlation between asset values is sufficiently high. That is, if buyers expect “bad” assets to trade quickly, then a seller with a bad asset has reason to be concerned about negative information being revealed, which induces her to trade quickly. Conversely, if buyers do not expect bad assets to trade quickly, then the seller has less to be concerned about and is more willing to wait. We study the implications of the theory for policies that target market transparency (e.g., TRACE). We show that total welfare is higher when markets are fully transparent than when the market is fully opaque. However, both welfare and trading activity can decrease in the degree of market transparency.

∗Affiliation: CREi, Universitat Pompeu Fabra, and Barcelona GSE. Email: vasriyan@crei.cat
†Affiliation: Haas School of Business, University of California at Berkeley. Email: wfuchs@haas.berkeley.edu
‡Affiliation: Haas School of Business, University of California at Berkeley. Email: bgreen@haas.berkeley.edu
1 Introduction

If asset values are correlated and traders have some private information then trading volume of one asset can be informative about the value of other assets. Thus, transaction transparency can be potentially important for both informational efficiency and the efficiency with which assets are reallocated. Indeed, the empirical literature has documented that the degree of market transparency matters, and there is an ongoing policy debate about whether to require transactional transparency for a variety of asset classes.\(^1\)

Our goal in this paper is to develop a simple theoretical framework from which to understand the role of information spillovers in markets where asset values are correlated. The basic model involves two sellers (\(i\) and \(j\)), each with an indivisible asset that has a value which is either low or high and \(\pi \in (0, 1)\) is the probability of being low. Asset values are correlated: there is a common state of nature that can be high or low and the probability that the asset value is low when the state is low is \(\lambda \geq \pi\). Each seller is privately informed about the value of her asset, but does not know the value of the other seller’s asset. Trading takes place via a competitive decentralized market over the course of two periods. In the first period, potential buyers can approach a seller and make offers. If a seller rejects all offers in the first period, then she can entertain more offers from new buyers in the second period. There is common knowledge from gains from trade and delay is costly.

The key novel ingredient of the model is that if, say, seller \(i\) trades in the first period, then with probability \(\xi \in [0, 1]\), that trade is observed by potential buyers of seller \(j\)’s asset prior to them making offers in the second period. We refer to \(\xi\) as the degree of market transparency: \(\xi = 1\) represents a marketplace where transactions are fully transparent, whereas \(\xi = 0\) represents an environment in which transactions are fully opaque.

An important feature of the model is that a trade of one asset can provide information to buyers about the value of the other asset. However, the information content of observed trading behavior is endogenous. For example, suppose that seller \(j\)’s strategy involves trading with a high probability in the first period conditional on having a low-value asset and not trading conditional on having a high-value asset. Then observing a trade (or lack thereof) has a high degree of information content about the value of seller \(i\)’s asset and clearly the degree of market transparency will play an important role in determining this his decision. On the other hand, if seller \(j\)’s strategy is to sell the asset in the first period regardless of its value, then observing a trade by this seller is completely uninformative about the quality of seller \(i\)’s asset and the degree of market transparency is irrelevant.

Our first main result is to show that when asset values are sufficiently correlated, a high degree of transparency leads to multiple equilibria. To provide intuition as to why this multiplicity obtains,\(^1\)

\(^1\)See, for example, Asquith et al. (2013) or Goldstein et al. (2007), who study the effects of increased transparency due to the introduction of TRACE in the corporate bond market.
consider the case in which the assets are perfectly correlated (i.e., \(\lambda = 1 \)) and the market is fully transparent (i.e., \(\xi = 1 \)). First, suppose that the low-type seller \(i \) trades with probability one in the first period and the high-type seller \(i \) trades with probability zero. If seller \(j \) delays trade in the first period, then her type will be perfectly revealed by whether seller \(i \) trades. Conditional on observing a trade by seller \(i \) in the first period, buyers will correctly infer that seller \(j \) has a low value asset and offer a low price in the second period. Therefore, a low-type seller \(j \) has no incentive to delay trade and strictly prefers to trade in the first period at a low price. Hence, there exists an equilibrium in which both low-value assets trade with probability one in the first period. We refer to this as the high-volume equilibrium.

Next, suppose that the low-type seller \(i \) trades with some intermediate probability in the first period. From seller \(j \)’s perspective, there is still positive probability that her asset will be revealed by if buyer’s observe a trade by seller \(i \), but there is also some chance that seller \(i \) does not trade, in which case buyers correctly infer that seller \(j \) is more likely to have a good asset making them willing to offer a high price in the second period. The potential for getting a high price in the second period makes seller \(j \) indifferent between trading in the first period, and hence she is willing to trade with some intermediate probability. Thus, there also exists an equilibrium in which both low-value assets trade with some intermediate probability in the first period.

In fact, we show there can exist up to three symmetric equilibria of the model. These equilibria are ranked both in terms of the volume of trade that takes place in the first period and the total welfare. The higher is the volume of trade in the first period, the more efficiently assets are reallocated and the higher is the total welfare. Three equilibria exist provided that asset values are sufficiently correlated and the market is sufficiently transparent. When either of these conditions breaks down, the (expected) information content revealed by seller \(i \)’s trade is insufficient to induce the moderate or high-volume equilibrium and only the low-volume equilibrium exists. Therefore, both the correlation of asset values and the degree of market transparency can impact total welfare.

We analyze the welfare effects in more detail by conducting comparative statics on both the degree of transparency and correlation of asset values. In the high-volume equilibrium, welfare is increasing in both parameters. Yet surprisingly, welfare is decreasing in both parameters in the moderate-volume equilibrium and independent of both parameters in the low-volume equilibrium. Therefore, increasing the degree of market transparency has the potential to improve or destroy welfare.

We extend the model to a setting with an arbitrary number, \(N > 1 \), assets. This model bears several interpretations. The number of assets can be interpreted literally as the number of relevant correlated assets in the market place. Alternatively, \(N \) can be interpreted as the degree of market integration: the number of different assets that traders can have information regarding. We show that multiple equilibria can persist in this environment and discuss implications of market integration and transparency for price dispersion and informational efficiency.
Our findings help contribute to the debate on mandatory transaction transparency, which has received significant attention from policy makers in recent years. FINRA has been a strong proponent of mandated transparency arguing that it “enhances the integrity of the corporate bond market and creates a level playing field for all investors” (NASD, 2005). In July 2002, the corporate bond market underwent a significant change when FINRA (then NASD) mandated that prices and volume completed transactions be publicly disclosed. Since then, TRACE has been expanded to include other asset classes including Agency-Backed Securities and some Asset-Backed Securities. There are also ongoing efforts by regulators to increase transparency in the markets for numerous derivatives (Title VII of Dodd-Frank) and European corporate bonds (Learner, 2011).

Opponents have objected to mandatory transparency arguing that it is unnecessary and potentially harmful. For example, if price transparency reduces dealer margins, dealers will be less willing to commit capital to hold certain securities thereby reducing liquidity.\(^2\) There is mixed empirical evidence as to whether increased transparency can reduce liquidity. Asquith et al. (2013) find that increased transparency led to a significant decline in trading activity for high-yield bonds. This is in contrast to a controlled study by Goldstein et al. (2007), who find no conclusive evidence that increased transparency causes a reduction in trading activity. Our model can help to reconcile and understand these findings.

1.1 Related Literature

Our work is related to Daley and Green (2012, 2015), who study a setting in which information is exogenously revealed to uninformed buyers. They show that exogenous information (or news) leads to a unique equilibrium in which liquidity completely dries up (i.e., there are periods in which trade occurs with probability zero). In contrast, we show that when information is endogenously revealed by the trading behavior of other market participants, there can exist multiple equilibria all of which require trade to occur with strictly positive probability in each period.

The role of transparency in offers has been looked at previously by Nöldeke and Van Damme (1990), Swinkels (1999), Hörner and Vieille (2009) and Fuchs and Skrzypacz (2015). The two most important differences with respect to these papers are that: first, we consider the transparency of transaction data while they all consider the transparency of rejected offers. Second, we explore the strategic considerations of two sellers whose assets have correlated values, while such considerations are absent in previous work. As we show these considerations are very important since they induce complementarities in the sellers’ strategies which in turn can lead to multiplicity of equilibria.

In our model, an increase in transparency allows agents to better learn the “common” state of nature that affects asset payoffs. Duffie et al. (2014) analyze the role of published benchmarks (e.g.

\(^2\)In a letter to the SEC, the Bond Market Association argued that adverse effects of mandatory transparency are likely to be exacerbated for lower-rated and less frequently traded bonds.
LIBOR) in over-the-counter markets that reveal some common information of dealers in facilitating such learning. As in our model, they find that benchmarks enhance efficiency and welfare by reducing informational asymmetries among market participants (e.g. dealers, traders). We also find that more transparent markets yield higher welfare through reduced information asymmetries; however, we also show that the effect of transparency on welfare need not be non-monotonic. Our model thus suggests that the welfare effects of transparency may depend on the level of pre-existing transparency in the market.

The idea of a two-way feedback between trading activity and market informativeness is also present in Vives (2013). He studies a two period market in the tradition of noisy rational expectations literature and finds that multiple equilibria can arise when noise-trader shocks are sufficiently persistent and informed buyers care only about their short-term returns. While our approaches are substantially different, his model also delivers equilibria that have high trading volume and market informativeness as well as equilibria in which trading volume and informativeness are low.

The rest of the paper is organized as follows. In Section 2, we lay out the basic theoretical framework and conduct preliminary analysis. In Section 3, we analyze the equilibrium of the model and present our main results. In Section 4, we consider extensions of the basic model. We conclude in Section 5. All proofs are in the Appendix.

2 The Model

In this section, we present the basic ingredients of the model, which features two indivisible assets with correlated values that can be traded in an over-the-counter market.

There are two sellers, indexed by $i \in \{A, B\}$. Each seller owns one indivisible asset and is privately informed of her asset’s type, denoted by $\theta_i \in \{L, H\}$. Seller i values an asset of type θ at c_θ, with $c_L < c_H$. Each seller has multiple potential trading partners or “buyers”. The value of a type θ asset to a buyer is v_θ and there is common knowledge of gains from trade, $v_\theta > c_\theta$, which can be motivated by, for example, liquidity constraints or hedging demands.

There are two trading periods: $t = 0$ and $t = 1$. In each period, two or more buyers make simultaneous price offers to each seller. The sellers discounts payoffs between the two periods according to a discount factor $\delta \in (0, 1)$. The payoff to a seller with an asset of type θ, who agrees to trade at a price p in period t is

$$ (1 - \delta^t) c_\theta + \delta^t p. $$

Similarly, the payoff to a buyer who purchases an asset of type θ at price p is given by

$$ v_\theta - p. $$
The payoff to a buyer whose offer is rejected is normalized to zero. All players are risk neutral. Without loss of generality, we restrict offers to be in the interval \([c_L, v_H]\), since it is a dominant strategy for the seller to reject any price below \(c_L\), and it is a weakly dominated strategy for any buyer to offer a price higher than \(v_H\). As each seller has a distinct asset, we will refer to trade for the asset of seller \(i\) as trade in market \(i\).

The correlation structure of asset values is as follows. There is an (unobservable) common state of nature \(s\) that takes values in \(\{l, h\}\) with \(P(s = l) = \pi \in (0, 1)\). The unconditional distribution of \(\theta_i\) is also \(P(\theta_i = L) = \pi\), whereas the distribution of \(\theta_i\) conditional on the state of nature is given by \(P(\theta_i = L|s = l) = \lambda \in [\pi, 1)\) for \(i \in \{A, B\}\); asset values are assumed to be independent conditional on the state of nature. Thus, the assets are correlated but imperfectly. We consider the case of perfect correlation in Section 4.2.

Importantly, asset correlation introduces the possibility that trade in one market contains information that is relevant for pricing the asset in another. We capture information spillovers across markets as follows. We suppose that buyers who trade with seller \(i\) are distinct from those who trade with seller \(j\). This allows us to study markets with various degrees of transparency since buyers in one market need external information to learn about trade in the other market. In particular, we assume that there is a probability \(\xi \in [0, 1]\) that a transaction in market \(i\) at \(t = 0\) is observed by buyers in market \(j\) prior to them making offers in period \(t = 1\). We refer to the parameter \(\xi\) as the level of market transparency, where \(\xi = 1\) stands for fully transparent markets and \(\xi = 0\) for fully opaque ones. Finally, we focus on primitives which satisfy the following assumptions.

Assumption 1. \(\pi v_L + (1 - \pi) v_H < c_H\)

Assumption 2. \(v_L < (1 - \delta) c_L + \delta v_H\)

The first assumption asserts that the adverse selection problem is sufficiently severe so as to rule out the efficient equilibrium where all types trade at \(t = 0\) in both markets. The second assumption rules out the separating equilibrium where, with probability 1, the low type trades in \(t = 0\) and the high type trades in \(t = 1\). Together, these two assumptions will guarantee that information spillovers across markets are relevant for equilibrium behavior.

2.1 Preliminary Analysis

The key determinate of equilibrium trade in each market will be the market belief about the value of the seller’s asset in that market. Let \(\pi_{i,t}\) denote the probability that buyers in market \(i\) assign to \(\theta_i = H\) at the beginning of period \(t\). For any belief \(\tilde{\pi}\), let \(\nabla(\tilde{\pi}) \equiv \tilde{\pi} v_L + (1 - \tilde{\pi}) v_H\) denote the expected value

3We assume without loss that unaccepted offers are not observed neither within nor across markets. As shown in Fuchs et al. (2014), with just two types this assumption does not change the within market equilibrium.
of an asset to a buyer. The strategy of a seller is a mapping from \(\theta \) and the history (inclusive of the current offers) to a probability of acceptance; the strategy of a buyer is a mapping from the history to a probability distribution over offers in the interval \([c_L, v_H]\). We restrict attention to Perfect Bayesian Equilibria (PBE).

The equilibrium behavior at \(t = 1 \) corresponds to that of the familiar static model. Our primary interest, therefore, is characterizing the equilibrium trading behavior at \(t = 0 \). We do so by using backward induction. Consider the equilibrium in market \(i \).

At \(t = 1 \): Suppose that seller has not traded at \(t = 0 \); otherwise, the game in this market ends. If \(\pi_{i,1} > \pi \equiv \frac{v_H-c_H}{v_H-v_L} \), then a familiar ‘market for lemons’ arises: only low type wants to trade and the price of the asset is \(v_L \). On the other hand, if \(\pi_{i,1} < \pi \), both types trade and the price is given by \(\overline{V}(\pi_{i,1}) \). In the case where \(\pi_{i,1} = \pi \), either of the two cases is possible since buyers are indifferent to whether to submit \(v_L \) and attract only the low type or submit \(\overline{V}(\pi_{i,1}) \) and attract both types. In this case, we will allow buyers to mix between the two offers and we will denote by \(\eta_i \in [0,1] \) the probability with which the bid is \(\overline{V}(\pi_{i,1}) \). We summarize these results in the following lemma:

Lemma 1 Given that the buyers’ belief about seller is \(\pi_{i,1} \), the equilibrium outcome at \(t = 1 \) in market \(i \) satisfies the following:

- If \(\pi_{i,1} > \pi \), then the bid is \(v_L \) and only low type seller accepts.
- If \(\pi_{i,1} < \pi \), then the bid is \(\overline{V}(\pi_{i,1}) \) and both types accept.
- If \(\pi_{i,1} = \pi \), then the bid is \(\overline{V}(\pi_{i,1}) \) with probability \(\eta_i \in [0,1] \) and \(v_L \) with probability \(1 - \eta_i \); both types accept bid \(\overline{V}(\pi_{i,1}) \), while only low type accepts bid \(v_L \).

It follows that the structure of the seller’s payoff at \(t = 1 \) as it depends on \(\theta_i \), \(\pi_{i,1} \), and \(\eta_i \), denoted by \(F_{\theta_i}(\pi_{i,1}, \eta_i) \), is given by:

\[
F_L(\pi_{i,1}, \eta_i) \equiv v_L + 1_{\{\pi_{i,1} \leq \pi\}} \cdot \eta_i \cdot (\overline{V}(\pi_{i,1}) - v_L) \quad \text{and} \quad F_H(\pi_{i,1}, \eta_i) = \max\{c_H, \overline{V}(\pi_{i,1})\}
\]

Thus, the payoff of the low type is increasing in \(\eta_i \) while the payoff of the high type is independent of \(\eta_i \); both payoffs are weakly decreasing in the belief \(\pi_{i,1} \).

At \(t = 0 \): The seller decides whether to accept the bid or wait until the next period. His payoff at \(t = 1 \) is stochastic because buyers’ beliefs will depend on news arriving from market \(j \) and because buyers may be mixing over offers. Let \(E_{\theta_i}\{F_{\theta_i}(\pi_{i,1}, \eta_i)\} \) denote the expected payoff of seller \(i \) at \(t = 1 \), when his type is \(\theta_i \). Note that \(F_H(\pi_{i,1}, \eta_i) \geq F_L(\pi_{i,1}, \eta_i) \) for any \((\pi_{i,1}, \eta_i)\). Thus, the expected payoff to waiting is higher for the high type seller than for the low type:

\[
(1 - \delta)c_H + \delta E_H\{F_H(\pi_{i,1}, \eta_i)\} > (1 - \delta)c_L + \delta E_L\{F_L(\pi_{i,1}, \eta_i)\}
\]
Hence, in equilibrium if the high type trades with positive probability at \(t = 0 \) then the low type will trade with probability one, and thus the bid at \(t = 0 \) is bounded above by the asset’s unconditional expected value \(\pi v_L + (1 - \pi)v_H \). This implies that the equilibrium bid at \(t = 0 \) must be \(v_L \): the high type seller will not trade at \(t = 0 \) because, by Assumption 1, his outside option \(c_H \) is greater than \(\pi v_L + (1 - \pi)v_H \). We summarize the above results in the following lemma:

Lemma 2 The equilibrium outcome at \(t = 0 \) in market \(i \) satisfies the following:

- Buyers’ bid is given by \(v_L \).
- High type seller does not accept the bid, while the low type accepts with probability \(\sigma_i \).

Thus far, we have not specified the information structure in each market. To this end, let \(Z_i \) denote the information that arrives to market \(i \) between \(t = 0 \) and \(t = 1 \). By Lemma 2, there are two values that \(Z_i \) can take on equilibrium path. Let \(Z_i = \emptyset \) if either trade does not occur in market \(j \) or if it occurs but is not observed in market \(i \) due to a lack of transparency, and let \(Z_i = v_L \) if trade occurs in market \(j \) at price \(v_L \) and this news arrives to market \(i \).

For \(z \in \{ \emptyset, v_L \} \) and \(\theta \in \{ L, H \} \), define \(\gamma_i(z) \equiv \mathbb{P}(Z_i = z) \) and \(\rho_{i,\theta}(z) \equiv \mathbb{P}(Z_i = z|\theta_i = \theta) \) to be the unconditional and type-conditional distributions of news \(Z_i \). The following lemma provides a characterization of these distributions:

Lemma 3 The news \(Z_i \) from market \(j \) to market \(i \) takes values in \(\Omega \equiv \{ \emptyset, v_L \} \) and has the following properties:

- **The unconditional distribution of** \(Z_i \) **is characterized by**
 \[
 \gamma_i(v_L) \equiv \mathbb{P}(Z_i = v_L) = (\xi \cdot \pi) \cdot \sigma_j
 \]

- **The distribution of** \(Z_i \) **conditional on** \(\theta_i \) **is characterized by**
 \[
 \rho_{i,L}(v_L) \equiv \mathbb{P}(Z_i = v_L|\theta_i = L) = (\xi \cdot \pi \cdot \phi) \cdot \sigma_j
 \]

where \(\phi \equiv \pi \left(\frac{\lambda}{\pi} \right)^2 + (1 - \pi) \left(\frac{1 - \lambda}{1 - \pi} \right)^2 \in (1, \pi^{-1}) \) and is increasing in \(\lambda \).

Thus, the distribution of news is endogenous to the trading strategies of market participants. In particular, the larger the frequency of trade \(\sigma_j \) of the low type, the more frequently these news arrive to market \(i \), and vice versa. The distribution of news in turn affects the strategies of the sellers. To
see this, note that if buyers in market \(i \) believe that low type sellers trade with probabilities \(\sigma_i \) and \(\sigma_j \), then conditional on seller \(i \) arriving to \(t = 1 \) and buyers observing news \(Z_i = z \), their beliefs become

\[
\pi_{i,1}(z) = \frac{(1 - \sigma_i) \cdot \frac{\rho_{i,L}(z)}{\gamma_i(z)} \cdot \pi}{1 - \sigma_i \cdot \frac{\rho_{i,L}(z)}{\gamma_i(z)} \cdot \pi}
\]

and depend on \(\sigma_j \) through the likelihood ratio \(\frac{\rho_{L,i}(z)}{\gamma_i(z)} \). This feedback between trade and information is at the center of the equilibrium analysis that follows.

3 Equilibrium

3.1 Exogenous News Benchmark

In this section, we consider the case of exogenous news, which is a useful benchmark to keep in mind. In particular, we study the equilibria in market \(i \) taking as given the trading strategy \(\sigma_j \) in market \(j \).

The following proposition gives a full characterization of equilibrium structure in market \(i \):

Proposition 1 Given \(\sigma_j \in [0, 1] \), an equilibrium in market \(i \) exists, is unique, and has the following properties:

- At \(t = 0 \), the low type’s trading strategy satisfies \(\sigma_i < 1 \) and

\[
v_L \leq (1 - \delta)c_L + \delta \mathbb{E}_L \{ F_L(\pi_{i,1}, \eta_i) \}
\]

with strict equality if \(\sigma_i > 0 \), where

\[
\mathbb{E}_L \{ F_L(\pi_{i,1}, \eta_i) \} = \sum_{z \in \Omega} \rho_{i,L}(z) \cdot [\eta_i(z)\nabla(\pi_{i,1}(z)) + (1 - \eta_i(z))v_L]
\]

- At \(t = 1 \), for news realization \(z \in \Omega \) buyers’ trading strategy satisfies

\[
\eta_i(z) \begin{cases}
 = 1 & \text{if } \pi_{i,1}(z) < \pi \\
 \in [0, 1] & \text{if } \pi_{i,1}(z) = \pi \\
 = 0 & \text{if } \pi_{i,1}(z) > \pi
\end{cases}
\]

where \(\pi_{i,1}(z) = \frac{(1 - \sigma_i) \cdot \frac{\rho_{i,L}(z)}{\gamma_i(z)} \cdot \pi}{1 - \sigma_i \cdot \frac{\rho_{i,L}(z)}{\gamma_i(z)} \cdot \pi} \), and \((\gamma_i, \rho_{i,L}) \) are as in Lemma 3.\(^4\)

\(^4\)When \(\sigma_j = 0 \), i.e., news \(Z_i = v_L \) occur with probability 0; thus, we have \(\gamma_i(v_L) = \rho_{i,L}(v_L) = 0 \) and in this case
These results follow directly from combining Lemmas 1−3 with the fact that the trading strategy \(\sigma_i \) must be optimal for the low type seller. First, that \(\sigma_i < 1 \) follows by Assumption 2 because otherwise we would have \(\pi_{i,1}(z) = 0 \) for \(z \in \Omega \) and \(\bar{V}(0) = v_H \); thus, the low type seller would strictly prefer to wait. Second, for the low type to mix in equilibrium, he needs to be indifferent. Hence, an equilibrium with no trade at \(t = 0 \) can arise only when the expected payoff \(\mathbb{E}_L\{F_L(\pi_{i,1}, \eta_i)\} \) of the low type is large despite him not trading at \(t = 0 \).

No News and Trade. The model with exogenous news nests the simple case where there are no news. In particular, this case can be captured by assuming that either there is no information arrival or that seller \(j \) does not trade if he is low type, i.e., \(\xi = 0 \) and/or \(\sigma_j = 0 \). In this case, we can omit the contingency of \(t = 1 \) variables on news. Note that in the absence of news trade must occur in \(t = 0 \) with positive probability. If not, buyers would not update their beliefs at \(t = 1 \) and, by Assumption 1, high type would not accept any offer that has non-negative profits for buyers. Hence, we must have \(\sigma_i \in (0, 1) \) and the low type must be indifferent to trading at \(t = 0 \) or waiting to \(t = 1 \):

\[
v_L = (1 - \delta)c_L + \delta F_L(\pi_{i,1}, \eta_i)
\]

where \(F_L(\pi_{i,1}, \eta_i) = \eta_i \bar{V}(\pi_{i,1}) + (1 - \eta_i)v_L \). As we discuss next and as shown in DG12, introduction of news into this setting can result in delay of trade and even collapse of trade at \(t = 0 \).

News and No Trade. Let the trading probability \(\sigma_j \) of market \(j \) be given and let us construct an equilibrium where market \(i \) does not trade at \(t = 0 \), i.e., \(\sigma_i = 0 \). In such an equilibrium, it must be the case that the low type prefers to wait rather than trade:

\[
v_L \leq (1 - \delta)c_L + \delta \mathbb{E}_L\{F_L(\pi_{i,1}, \eta_i)\}|_{\sigma_i=0}
\]

When there is no trade at \(t = 0 \) in market \(i \), there can neither be trade at \(t = 1 \) following the realization of news \(Z_i = v_L \); however, there must be trade following \(Z_i = \emptyset \). In fact, assume further that following event \(Z_i = \emptyset \) trade occurs with probability 1 in market \(i \). Then, we can show that

\[
\mathbb{E}_L\{F_L(\pi_{i,1}, \eta_i)\}|_{\sigma_i=0} = \hat{\pi} v_L + (1 - \hat{\pi}) v_H
\]

where \(\hat{\pi} \equiv \xi(\pi \phi) \sigma_j + (1 - \xi(\pi \phi) \sigma_j) \frac{1 - \xi(\pi \phi) \sigma_j}{1 - \xi(\pi \phi) \sigma_j} \pi \) is the probability that the low type assigns to receiving offer \(v_L \) at \(t = 1 \). Then, a sufficient condition for this to be an equilibrium is that

\[
\hat{\pi} \leq \min\left\{ 1 - \frac{1 - \delta}{\delta} \frac{v_L - c_L}{v_H - v_L}, \hat{\pi} \right\}
\]

we set without loss \(\frac{\rho_{i,L}(v_L)}{\gamma_{i,L}(v_L)} \equiv \phi \).

\(^5\)The existence and uniqueness of equilibria follow from the fact that the continuation payoff is monotonic in \(\sigma_i \) and \(\eta_i \) and because its range is the entire interval \([v_L, v_H]\).
In other words, the low type must want to wait at $t = 0$ and the high type must accept the offer at $t = 1$ following news $Z_i = \emptyset$. It can be shown that this condition is indeed satisfied when $\xi \cdot \sigma_j \in (0, 1)$ is not too large and π is sufficiently close to $\overline{\pi}$. Thus, no trade is indeed a possibility in an economy where news are exogenous.

With endogenous information, however, the trading probability σ_j in market j is an equilibrium outcome and the condition which generates no trade is no longer guaranteed to hold. In fact, as we will show in the next section, the equilibrium imposes sufficient restrictions on σ_j so as to ensure that trade occurs with positive probability.

3.2 Endogenous News

In the previous section, we took the trading strategy of market j as given and then studied the equilibrium in market i. The full equilibrium of the economy, however, requires that the trading strategy in market j also be an equilibrium outcome. We focus on symmetric equilibria, in which the trading strategies in the two (symmetric) markets are identical: $\sigma \equiv \sigma_A = \sigma_B$ and $\eta \equiv \eta_A,1 = \eta_B,1$. In what follows, we therefore drop the subscripts indicating a market’s identity.

The first result of this section is that endogeneity of information implies that there is always trade at $t = 0$:

Proposition 2 The equilibria of this economy have the properties stated in Proposition 1, except that at $t = 0$ the low type’s trading strategy satisfies $\sigma \in (0, 1)$ and $v_L = (1 - \delta)c_L + \delta E_L\{F_L(\pi_1, \eta)\}$. In particular, trade occurs with positive probability at $t = 0$.

The intuition for this result is the following. If there is no trade at $t = 0$, then there will be no news. But then buyers will not update their beliefs and they will believe that the sellers are of an average type at $t = 1$. By Assumption 1, however, the high type will not trade at any price that makes non-negative profits for buyers and the bid at this date will be v_L w.p. 1. But then the low type will not want to delay trade in order to get v_L that he can get by trading at $t = 0$. Thus, $\sigma = 0$ can no longer be an equilibrium. This result highlights the importance of thinking about the source of information in financial markets. If much of the information available to market participants is generated through trade itself, then the equilibrium puts a lower bound on the amount of trade that we should observe.

Next, we show that the endogeneity of information can introduce complementarities in the trading behavior of markets and lead to equilibrium multiplicity. To see this, consider the continuation payoff of the low type seller at $t = 1$:

$$E_L\{F_L(\pi_1, \eta)\} = \sum_{z \in \Omega} \rho_L(z) \cdot [\eta(z)\nabla(\pi_1(z)) + (1 - \eta(z))v_L]$$
Given the distribution of news \((\gamma, \rho_L)\), this continuation value is increasing in \(\sigma\) because buyers become more optimistic about the seller who arrives at \(t = 1\): \(\pi_1(z)\) is decreasing in \(\sigma\) for \(z \in \Omega\). This would be the only effect if news were exogenous. With endogenous news, however, the trading probability \(\sigma\) also affects the distribution of news \((\gamma, \rho_L)\). There are two effects to consider.

First, buyers’ beliefs \(\{\pi_1(z)\}_{z \in \Omega}\) depend on \(\sigma\) only conditional on trade not having occurred in the other market, i.e., when \(Z = \emptyset\). This is because if the other market trades, the seller’s type in that market is revealed fully. On the other hand, conditional on no trade in the other market, higher \(\sigma\) makes buyers more optimistic about the seller. Intuitively, more trade by the low type in the other market implies that this seller is more likely to be of high type if he has not traded yet. Due to correlation, this means that the seller in own market is more likely to be of high type. This increases the prices that the seller expects to receive at \(t = 1\) and, therefore, his expected continuation payoff.

Second, the trading strategy \(\sigma\) affects how frequently bad news arrive to each market. As \(\sigma\) increases, the low type seller in each market trades more frequently; as a result, both \(\gamma(v_L)\) and \(\rho_L(v_L)\) increase. Because prices are lower following the event of trade in the other market, the low type becomes more pessimistic when \(\rho_L(v_L)\) increases, and this effect is stronger the more correlated are the assets. This reduces the expected payoff of the low type at \(t = 1\) and induces him to want to trade sooner. As we show next, when transparency and correlation are sufficiently high, this effect can be strong enough so as to introduce complementarities in trade and equilibrium multiplicity.

Proposition 3 The equilibria of this economy fall into one of the following categories:

1. **Low Trade:** There exists \(\tilde{\delta} < 1\) such that for \(\delta \geq \tilde{\delta}\), there is an equilibrium in which (i) the trading strategy of the seller ensures that \(\pi_1(\emptyset) = \pi\), and (ii) the trading strategy of the buyers satisfies \(\eta(v_L) = 0 \leq \eta(\emptyset)\).

2. **High Trade:** Fix \(\delta < 1\), then there exist \(\bar{\lambda}_\delta, \zeta_\delta < 1\) such that for \(\lambda > \bar{\lambda}_\delta\) and \(\xi > \zeta_\delta\), there is an equilibrium in which (i) the trading strategy of the seller ensures that \(\pi_1(v_L) \leq \pi\), and the trading strategy of the buyers satisfy \(\eta(v_L) \leq 1 = \eta(\emptyset)\).

3. **Medium Trade:** Fix \(\delta > \tilde{\delta}\), \(\lambda > \bar{\lambda}_\delta\), and \(\xi > \zeta_\delta\), then there is an equilibrium in which (i) the trading strategy of the seller ensures that \(\pi_1(\emptyset) < \pi < \pi_1(v_L)\), and (ii) the trading strategy of the buyers satisfy \(\eta(v_L) = 0 < 1 = \eta(\emptyset)\).

Importantly, we have that (i) the three types of equilibria coexist when \(\delta > \tilde{\delta}\), \(\lambda > \bar{\lambda}_\delta\), and \(\xi > \zeta_\delta\) and (ii) the equilibrium is unique if either \(\delta\), \(\lambda\), or \(\xi\) are sufficiently small.
These results are illustrated in Figures 1 and 2. The top panel of Figure 1 plots the equilibrium trading probability in one market against an exogenously given trading probability in the other market, for two different values of the correlation parameter λ. As we can see, when correlation high, the relationship between the two trading probabilities is positive, i.e., the trading behavior in the two markets is complementary. In fact, as the figure illustrates, the complementarity is sufficiently strong so as to introduce equilibrium multiplicity - the crossing with the 45 degree line indicates an equilibrium in both markets. The difference in the behavior of markets along different equilibria can be seen not only due to differences in σ but also due to differences in buyers’ strategies η illustrated in the bottom two panels of Figure 1.

Figure 2, on the other hand, imposes an equilibrium in the two markets and plots the behavior of the equilibrium as a function of the level of transparency, given the high level of correlation $\lambda = 0.9$. As we can see, equilibrium multiplicity kicks in only when the level of transparency is sufficiently
large. Of particular interest is the dramatic difference in the trading behavior across the the equilibria when such multiplicity exists.

Let σ^q for $q = LT, MT, HT$ denote an equilibrium trading probability of the low type seller in the low, medium, and high trade equilibria respectively. The following corollary states that we can rank the three types of equilibria in terms of trading volume, and it shows that trading volume behaves very differently across the three types of equilibria:

Corollary 1 Fix δ. If the three types of equilibria of Proposition 3 coexist, then (i) $\sigma^{LT} < \sigma^{MT} \leq \sigma^{HT}$ and (ii) $\lim_{\lambda \to 1} \sigma^{HT} = 1$ whereas $\sup_{\lambda, \xi} \sigma^{LT}, \sup_{\lambda, \xi} \sigma^{MT} \leq \overline{\sigma}$ for some $\overline{\sigma} < 1$.

Figure 2: Equilibria with transparency ξ and correlation $\lambda = 0.9$.
3.3 Welfare

In this section, we study how the level of market transparency and the degree of correlation among assets affects the welfare of market participants. Let $W_\theta(\xi, \lambda)$ denote the equilibrium welfare of type θ seller when transparency is ξ and correlation is λ. Since, in equilibrium, low type sellers are always indifferent between trade at $t = 0$ and $t = 1$, we have $W_L(\cdot, \cdot) \equiv \nu_L$. Thus, the welfare of the low type is independent of the level of transparency and correlation. On the other hand, the welfare of the high type will depend on both transparency and correlation and it is given by

$$W_H(\xi, \lambda) = (1 - \delta)c_H + \delta \mathbb{E}_H \{ F_H(\pi_1, \eta) \}$$
where $F_H(\pi_1, \eta) = \max\{c_H, V(\pi_1)\}$. Thus, a higher level ξ of transparency or correlation is welfare improving for sellers if and only if his expected payoff $E_H(\max\{c_H, V(\pi_1)\})$ is higher.

Note that because buyers always break even in equilibrium, in order to make welfare comparisons we can only focus on the welfare of the high type. Thus, any improvement in the high type’s welfare is also a Pareto improvement. The following proposition proves the main result of this section, stating that while welfare with transparency and correlation is always higher than in their absence, the effect of transparency and correlation on welfare can be non-monotonic.

Proposition 4 Fix δ. Then for any $\xi, \tilde{\xi} > 0$ and $\lambda, \tilde{\lambda} > \pi$, we have $W_H(\xi, \lambda) \geq W_H(\tilde{\xi}, \pi)$ and $W_H(\xi, \lambda) \geq W_H(0, \tilde{\lambda})$ with strict inequality if and only if in an equilibrium with transparency ξ and correlation λ the high type seller strictly prefers to trade following the event of no trade in the other market. Furthermore, the effect of transparency and correlation on welfare can be non-monotonic.

Let W_q^H with $q = LT, MT, HT$ denote the welfare of the high type seller in the low, medium, and high trade equilibria respectively. The following corollary is the analogue of Corollary 1 for welfare. In particular, it states that we can rank the three types of equilibria in terms of welfare, and it shows that welfare behaves very differently across the three types of equilibria:

Corollary 2 Fix δ. If the three types of equilibria of Proposition 3 coexist, then (i) $W_{LT}^H < W_{MT}^H \leq W_{HT}^H$ and (ii) $\lim_{\lambda \to 1} W_{HT}^H = (1 - \delta)c_L + \delta v_H$ whereas $\sup_{\lambda, \xi} W_{LT}^H, \sup_{\lambda, \xi} W_{MT}^H \leq \overline{W}$ for some $W < (1 - \delta)c_L + \delta v_H$.

4 Robustness and Extensions

In this section, we investigate the robustness of our results and consider several extensions of the basic framework.

4.1 Perfect Correlation

We study the case where the traded assets are perfectly correlated, i.e., $\lambda = 1$. When correlation is perfect, we may have to worry about buyers’ off-equilibrium beliefs. Suppose that the equilibrium specifies that low type trades immediately at $t = 0$, but that only one of the sellers has traded. In this case, buyers can put any probability $\pi^{off} \in [0, 1]$ to the remaining seller being low type. Then the continuation value of the low type seller can be expressed as:

$$E_L\{F_L(\pi_1, \eta)\} = \sum_{z \in \Omega} \rho_L(z) \cdot [\eta(z)\nabla(\pi_1(z)) + (1 - \eta(z))v_L]$$
Figure 4: Welfare

In top panel, transparency is $\xi = 1$; in bottom panel, correlation is $\lambda = 0.9$.

where $(\gamma, \rho_L, \eta, \pi_1)$ are as in Lemma 3 and Proposition 1, but with $\lambda = 1$ and $\sigma = 1 \implies \pi_1(v_L) = \pi^{off}$. There are two sets of equilibria to consider in this economy depending on whether the low type plays a pure strategy of trading immediately or a mixed trading strategy. As before, an equilibrium with no trade is impossible.

First, as with imperfect correlation, we can have the low type mix between trade at $t = 0$ and $t = 1$. In such equilibria, the low type must be indifferent whether to trade at $t = 0$ or $t = 1$ and his continuation value is

$$\mathbb{E}_L \{ F_L (\pi_1, \eta) \} = \rho_L(v_L) \cdot v_L + (1 - \rho_L(v_L)) \cdot [\eta(0) V(\pi_1(0)) + (1 - \eta(0))v_L]$$

Since this continuation value is the limit of continuation values with imperfect correlation as λ goes to 1 and $\eta(v_L) = 0$, we conclude that these equilibria are the limits of low and medium trade equilibria.
of the economy with imperfect correlation.

Second, in contrast to imperfect correlation, we can have the low type seller trade immediately at \(t = 0 \). In that case, the low type receives a payoff \(v_L \) and the high type receives a payoff \((1 - \delta)c_H + \delta v_H \), and this equilibrium exists if with the most pessimistic off-equilibrium belief \(\pi^{off} = 1 \), we have

\[
v_L \geq (1 - \delta)c_L + \delta \mathbb{E}_L\{F_L(\pi_1, \eta)\} |_{\sigma = 1}
\]

Intuitively, if the low type expects the other low type to trade and reveal their common type, then there is no incentive to delay trade to \(t = 1 \). Now, despite being in pure strategies, these equilibria are the limits of the high trade equilibria with imperfect correlation. To see this, note that the latter equilibria require that the belief following trade in the other market be sufficiently high:

\[
\pi_1(v_L) = \frac{(1 - \sigma)\phi\pi}{1 - \sigma\phi\pi} \leq \bar{\pi}
\]

Hence, along high trade equilibria we must have \(\lim_{\lambda \to 1} \sigma = 1 \); hence, as with perfect correlation, the low type’s payoff will be \(v_L \) and the high type’s payoff will approach \((1 - \delta)c_H + \delta v_H \). The following proposition provides a summary of the above results:

Proposition 5 The equilibria with perfect correlation are payoff equivalent to the limits of equilibria with imperfect correlation as \(\lambda \) approaches 1.

4.2 Many Assets

In this section, we extend the analysis to the case of many sellers. Suppose that there are \(N + 1 \) sellers, each seller endowed with an asset with payoffs as described in Section 2. Let \(Z \) be the news that arrive to a market, and note that now \(Z \in \{v_L, \emptyset\}^N \); this is because each market now can release news \(v_L \) or \(\emptyset \). In any symmetric equilibrium, we only need to specify how many \(v_L \) offers have been observed from other markets. We will denote by \(z_k \) the event that exactly \(k \) transactions with offer \(v_L \) have been observed from other markets. Then the unconditional and type-conditional distributions of news are given by:

\[
\gamma(z_k) = \mathbb{P}(Z = z_k) = \sum_{j=k}^{N} \binom{j}{k} (\xi\sigma)^k (1 - \xi\sigma)^{N-j} \mathbb{P}(c_L^j, c_H^{N-j})
\]

\[
\rho_L(z_k) = \mathbb{P}(Z = z_k | c_L) = \sum_{j=k}^{N} \binom{j}{k} (\xi\sigma)^k (1 - \xi\sigma)^{N-j} \mathbb{P}(c_L^j, c_H^{N-j} | c_L)
\]
where \(P(c^j_L, c^N_{-j}) \) is the unconditional probability that only \(j \) sellers are of low type and \(P(c^j_L, c^N_{-j} | c_L) \) is that probability conditional on seller \(N + 1 \) being of low type as well. These probabilities are in turn given by:

\[
P(c^j_L, c^N_{-j}) = \binom{N}{j} \left(\lambda^j (1 - \lambda)^{N-j} \pi + \left(\frac{1 - \lambda}{1 - \pi} \right)^j \left(1 - \frac{1 - \lambda}{1 - \pi} \right)^{N-j} (1 - \pi) \right)
\]

\[
P(c^j_L, c^N_{-j} | c_L) = \binom{N}{j} \left(\lambda^j (1 - \lambda)^{N-j} \cdot \lambda + \left(\frac{1 - \lambda}{1 - \pi} \right)^j \left(1 - \frac{1 - \lambda}{1 - \pi} \right)^{N-j} \cdot (1 - \lambda) \right)
\]

We now show that the multiple equilibria can arise with many assets as well. Although there can now be many equilibria, we will focus our attention to two types of equilibria which, as before, we label low and high trade equilibria.

High Trade Equilibrium. Let us construct the counterpart of the high trade equilibrium of Proposition 3. Consider equilibria that feature \(\eta(v^N_L) > 0 \), i.e. where trade occurs with positive probability even following the event where every other market has been observed to have traded at \(t = 0 \). Then, the high type must weakly prefer to trade following this event:

\[
\pi_1(v^N_L) = \frac{(1 - \sigma) \cdot \frac{\rho_L(v^N_L)}{\gamma(v^N_L)} \cdot \pi}{1 - \sigma \cdot \frac{\rho_L(v^N_L)}{\gamma(v^N_L)} \cdot \pi} \leq \pi
\]

Notice that we must then have

\[
\lim_{\lambda, \xi \to 1} \gamma(v^N_L) \to \sigma^N \pi
\]

\[
\lim_{\lambda, \xi \to 1} \rho_L(v^N_L) \to \sigma^N
\]

and if \(\sigma \) were bounded away from 1, we would have \(\pi_1(v^N_L) \to 1 \), which is a contradiction. Thus, we conclude that \(\sigma \to 1 \) and \(\rho_L(v^N_L) \to 1 \); thus, the range of the low type’s continuation value converges to the interval \((v_L, v_H] \). This establishes the result that when \(\lambda \) and \(\xi \) are large enough, this type of equilibrium exists.

Low Trade Equilibrium. Let us now construct the counterpart of the low trade equilibrium of Proposition 3. Consider equilibria that feature \(\eta(v^0_L) \leq 1 \), i.e. where trade occurs with positive probability only following the event where no other market has been observed to have traded at \(t = 0 \). Then, the high type must weakly prefer to trade following this event:

\[
\pi_1(v^0_L) = \frac{(1 - \sigma) \cdot \frac{\rho_L(v^0_L)}{\gamma(v^0_L)} \cdot \pi}{1 - \sigma \cdot \frac{\rho_L(v^0_L)}{\gamma(v^0_L)} \cdot \pi} = \pi
\]
To show that the low trade equilibria exist for large δ, λ, and ξ we need to show that the range of the low type’s continuation value does not converge to the singleton $\{v_L\}$ as λ, ξ go to 1, which is equivalent to showing that $\lim_{\lambda, \xi \to 1} \rho_L(v^0_L) > 0$. Since we have

$$
\lim_{\lambda, \xi \to 1} \gamma(v^0_L) = (1 - \lim_{\lambda, \xi \to 1} \sigma)^N \cdot \pi + 1 - \pi
$$

$$
\lim_{\lambda, \xi \to 1} \rho_L(v^0_L) = (1 - \lim_{\lambda, \xi \to 1} \sigma)^N
$$

it suffices to show that $\lim_{\lambda, \xi \to 1} \sigma < 1$. But, if we had that $\lim_{\lambda, \xi \to 1} \sigma = 1$, then

$$
\pi = \lim_{\lambda, \xi \to 1} \pi_1(v^0_L) = \lim_{\lambda, \xi \to 1} \frac{(1 - \sigma) \cdot \rho_L(v^0_L)}{\gamma(v^0_L)} \cdot \pi = 0 < \pi
$$

which contradicts the fact that $\pi_1(v^0_L) = \pi$ in these equilibria. The following proposition summarizes these results.

Proposition 6 Fix N. Then (i) there exists $\bar{\delta} < 1$ such that the low trade equilibrium exists whenever $\delta > \bar{\delta}$, and (ii) there exist $\bar{\lambda}_\delta, \bar{\xi}_\delta < 1$ such that the high trade equilibrium exists whenever $\lambda > \bar{\lambda}_\delta$, $\xi > \bar{\xi}_\delta$. Thus, these equilibria coexist whenever $\delta > \bar{\delta}$, $\lambda > \bar{\lambda}_\delta$, and $\xi > \bar{\xi}_\delta$.

5 Conclusions

In this paper, we studied informational spillovers and transparency in markets where the assets have correlated values. We showed that in this setting information transmitted from one market to another is endogenous to trading activity. As a result, the degree of transparency of financial markets can have important implications for trading behavior and welfare in these markets. The important insights that we derived were the following. First, we showed that, contrary to an economy with exogenous news, when news are endogenous, no trade can no longer be an equilibrium outcome. Second, we showed that the endogenous nature of information introduces complementarities in the trading behavior across markets. In particular, when correlation and transparency are sufficiently high, these complementarities can be sufficiently strong so as to lead to multiplicity of equilibria that differ dramatically in trading volume, prices, and welfare. We argued that while transparency is always preferred to lack of transparency, an interior level of transparency may be optimal depending on the type of equilibrium on which traders coordinate.
References

6 Appendix

Proof of Proposition 1. Let \(\sigma_j \in [0, 1] \) be given. From Lemmas 1 and 2, we only need to determine the low type’s strategy \(\sigma_i \) and the buyers’ strategy \(\eta_i \). By Assumption 2, \(\sigma_i = 1 \) cannot be an equilibrium since then the price at \(t = 1 \) would be \(v_H \) and the low type would want to wait; hence, \(\sigma_i < 1 \). In that case, we must have \(v_L \leq (1 - \delta) c_L + \delta \mathbb{E}_L \{ F_L (\pi_i, \eta_i) \} \) with strict equality only if \(\sigma_i > 0 \). The equilibrium strategy of the buyers follows from Lemma 1. Finally, uniqueness follows from the monotonicity of \(\mathbb{E}_L \{ F_L (\pi_i, \eta_i) \} \) in \(\sigma \) and \(\eta_i \).

Proof of Proposition 2. If \(\sigma = 0 \), then there is no news and thus \(v_L \leq (1 - \delta) c_L + \delta F_L (\pi_i, \eta_i) \) with strict equality only if \(\sigma > 0 \). But, at \(\sigma = 0 \), we have \(F_L (\pi_i, \eta_i) = \eta_i (\pi v_L + (1 - \pi) v_H) + (1 - \eta_i) v_L \) and since \(\pi > \overline{\pi} \) we must have \(\eta_i = 0 \). Hence, \(v_L > (1 - \delta) c_L + \delta v_L \) which is a contradiction. Thus, \(\sigma \in (0, 1) \).

Proof of Proposition 3. It is clear the equilibrium falls into one of the three categories specified. First, I show that high trade equilibria exist when \(\lambda \) and \(\xi \) are sufficiently large. Let \(\sigma \) be such that \(\pi_1(v_L)_{\sigma = \sigma} = \overline{\pi} \), and note that if \(\sigma \geq \overline{\sigma} \)

\[
\mathbb{E}_L \{ F_L \} = (\xi \pi \phi) \cdot \sigma \times [\eta (v_L) (\pi_1 (v_L))_{\sigma \geq \sigma} \cdot v_L + (1 - \pi_1 (v_L))_{\sigma \geq \sigma} \cdot v_H] + (1 - \eta (v_L)) v_L
\]

and we can make the lower bound arbitrarily close to \(v_L \) because \(\lim_{\lambda, \xi \rightarrow 1} (\xi \pi \phi) \cdot \overline{\sigma} = 1 \). This establishes the existence of high trade equilibria. Second, I show that the low trade equilibria exist when \(\delta \) is sufficiently large. Let \(\sigma \) be such that \(\pi_1 (0)_{\sigma = \sigma} = \overline{\pi} \), and note that in these equilibrium, the continuation value of the low type is

\[
\mathbb{E}_L \{ F_L \} = (\xi \pi \phi) \cdot \sigma \times v_L + (1 - \xi \pi \phi) \cdot (\pi_1 (0)_{\sigma = \sigma} \cdot v_L + (1 - \pi_1 (0))_{\sigma = \sigma} \cdot v_H)
\]

where \(\eta (0) \in [0, 1] \). Thus, in this type of equilibrium, the continuation has the following range:

\[
\mathbb{E}_L \{ F_L \} \in [v_L, (\xi \pi \phi) \cdot \sigma \times v_L + (1 - (\xi \pi \phi)) \cdot v_H]
\]

Because \(\sup_{\xi, \lambda} (\xi \pi \phi) \cdot \overline{\sigma} < 1 \) along these equilibria, we have that the low trade equilibria exist whenever \(\delta \) is greater than some \(\delta < 1 \), independently of the values of \(\lambda \) and \(\xi \). Note that the ranges of
the continuation values in the two equilibria overlap whenever \(\delta > \bar{\delta} \) and \(\lambda \) and \(\xi \) are sufficiently large. Finally, the range of the continuation value in the medium trade equilibria falls in between the continuation values of the high and the low trade equilibria. Hence, whenever these two equilibria exist, the medium trade equilibrium exists as well.

We now show that the equilibrium is unique when either \(\delta, \lambda \), or \(\xi \) are small. ■

Proof of Corollary 1. For \((i) \) note that we have \(\pi_{1}^{HT}(v_{L}) \leq v_{L} < \pi_{1}^{MT}(v_{L}) < \pi_{1}^{LT}(v_{L}) = 1 \) and \(\pi_{1}(v_{L}) \) is increasing in \(\sigma \). This is sufficient to conclude that \(\sigma^{LT} < \sigma^{MT} < \sigma^{HT} \). For \((ii) \) note that \(\sigma^{HT} \geq \bar{\sigma} \) where \(\bar{\sigma} \) satisfies

\[
\pi_{1}(v_{L})|_{\sigma=\bar{\sigma}} = \frac{(1-\bar{\sigma})\phi\pi}{1-\bar{\sigma}\phi\pi} = \bar{\pi}
\]

where \(\phi = \pi (\frac{\lambda}{\pi})^{2} + (1-\pi) (\frac{1-\lambda}{\pi})^{2} \). Hence, we get that \(\bar{\sigma} = \frac{\pi-\phi\pi}{\phi\pi(1-\pi)} \implies \lim_{\lambda \to 1} \bar{\sigma} = 1 \implies \lim_{\lambda \to 1} \sigma^{HT} = 1 \). On the other hand, suppose that \(\sup_{\lambda,\xi} \sigma^{q} = 1 \) for \(q = LT \) or \(q = MT \), and recall that in these two equilibria we must have

\[
\pi_{1}^{q}(\emptyset) = \frac{(1-\sigma^{q})\frac{1-\xi\phi\sigma}{1-\xi^2\sigma}}{1-\sigma^{q}\frac{1-\xi\phi\sigma}{1-\xi^2\sigma}} \leq \bar{\pi} < \frac{(1-\sigma^{q})\phi\pi}{1-\sigma^{q}\phi\pi} = \pi_{1}^{q}(v_{L})
\]

Now, consider any sequence \(\{\lambda_{n},\xi_{n}\}_{n} \) such that \(\lim_{n \to \infty} \sigma_{n}^{q} = 1 \). Then to ensure that one of these equilibria exists, we must have \(\lim_{n \to \infty} \lambda_{n} = \lim_{n \to \infty} \xi_{n} = 1 \). But then, the continuation value of the low type converges to \(v_{L} \) along these equilibria, which cannot be an equilibrium. Thus, we conclude that \(\sup_{\lambda,\xi} \sigma^{q} < 1 \) for \(q = LT, MT \). ■

Proof of Proposition 4. Let us prove the result on the effect of transparency on welfare. The proof for the effect of correlation on welfare is analogous. Fix \(\lambda > 0 \) and suppose that \(\xi > 0 \) and in equilibrium we have \(\pi_{1}(\emptyset) = \bar{\pi} \). Then we must have that

\[
\mathbb{E}_{L}\{F_{L}\}|_{\xi > 0} = (\xi\pi\phi)\cdot \bar{\sigma} \times v_{L} + (1-(\xi\pi\phi)\cdot \bar{\sigma}) \times [\eta(\emptyset)c_{H} + (1-\eta(\emptyset))v_{L}]
\]

\[
< c_{H}
\]

where \(\bar{\sigma} \) satisfies \(\pi_{1}(\emptyset)|_{\sigma=\bar{\sigma}} = \bar{\pi} \). Thus, \(\pi_{1}(\emptyset) = \bar{\pi} \) must also be satisfied in the equilibrium with \(\xi = 0 \). In both cases, \(W_{H}(\xi,\lambda) = W_{H}(0,\cdot) = c_{H} \). Now, suppose that when \(\xi > 0 \), in equilibrium we have \(\pi_{1}(\emptyset) < \bar{\pi} \). If when \(\xi = 0 \), we have \(\pi_{1}(\emptyset) = \bar{\pi} \), then the result is immediate; so suppose that this is not the case. Then, the result follows from:

\[
\mathbb{E}_{H}\{F_{H}\}|_{\xi > 0} > \mathbb{E}_{L}\{F_{L}\}|_{\xi > 0} = \mathbb{E}_{L}\{F_{L}\}|_{\xi = 0} = \mathbb{E}_{H}\{F_{H}\}|_{\xi = 0}
\]

For an example of non-monotonicity, see Figure (2). ■
Proof of Corollary 2. The welfare of the high type is given by

\[
W^q_H = (1 - \delta) c_H + \delta \cdot \left[\rho^q_H (v_L) \max \left\{ c_H, \nabla \left(\pi^q_1 (v_L) \right) \right\} + (1 - \rho^q_H (v_L)) \max \left\{ c_H, \nabla \left(\pi^q_1 (0) \right) \right\} \right]
\]

where \(\rho^q_H (v_L) = \xi \left(\hat{\phi} \pi \right) \sigma^q \) and \(\hat{\phi} \equiv \mathbb{P} (\theta_j = L | \theta_i = H) = \frac{1 - \lambda}{1 - \pi} \left(\lambda + 1 - \frac{1 - \lambda}{1 - \pi} \right) \). Since \(W^H_{HT} > c_H \), we can immediately conclude that \(W^H_{HT} > W^L_{HT} \). To show that \(W^H_{HT} > W^M_{HT} \), we need to show that

\[
W^H_{HT} = (1 - \delta) c_H + \delta \cdot \left[\rho^H_{HT} (v_L) \max \left\{ c_H, \nabla \left(\pi^{HT}_1 (v_L) \right) \right\} + (1 - \rho^H_{HT} (v_L)) \nabla \left(\pi^{HT}_1 (0) \right) \right]
\]

\[
> (1 - \delta) c_H + \delta \cdot \left[\rho^M_{HT} (v_L) v_L + (1 - \rho^M_{HT} (v_L)) \nabla \left(\pi^{MT}_1 (0) \right) \right] = W^M_{HT}
\]

For \((ii)\), Corollary 1 implies that \(\lim_{\lambda \to 1} \sigma^{HT} = 1 \), and therefore that \(\lim_{\lambda \to 1} W^H_{HT} = (1 - \delta) c_H + \delta v_H \) and, for \(q = L, T \), since \(\sup_{\lambda, \xi} \sigma^q < 1 \) we have

\[
\sup_{\lambda, \xi} W^q_H \leq (1 - \delta) c_H + \delta \max \left\{ c_H, \nabla \left(\pi^q_1 (0) \right) \right\} < (1 - \delta) c_H + \delta v_H
\]

because \(\inf_{\lambda, \xi} \pi^q_1 (0) > 0 \). ■