Welfare and Growth in Open Economies

Timothy J. Kehoe

University of Minnesota
and Federal Reserve Bank of Minneapolis

July 2009

Society of Economic Dynamics Meeting - Istanbul

www.econ.umn.edu/~tkehoe
Has Mexico gained from trade?

- Has liberalized trade policy starting in mid 1980s.
- Has had dramatic increase in trade.
- Has had no increase in GDP per capita.
Mexican trade and growth
Does this imply that Mexico has not gained from trade?
Does this imply that Mexico has not gained from trade?

No!
How has Mexico gained from trade?

• We find gains from trade
 In welfare
 Not in real GDP per capita

• We need theory for welfare

Bajona, Gibson, Kehoe, and Ruhl (2009)
We need theory for welfare

- Two workhorse theories:
 Heckscher-Ohlin models
 Heterogeneous firm trade models

- Both theories tell us trade
 Increases welfare,
 Does not increase GDP.

Heckscher-Ohlin models
Heckscher-Ohlin models

• In static model, opening to trade
 Increases welfare,
 Decreases GDP.

• In dynamic model, opening to trade
 Increases consumption in capital-poor countries,
 Decreases capital accumulation in capital poor countries.
Static Heckscher-Ohlin

• 2 factors of production — physical capital, labor

• 2 goods — capital intensive, labor intensive

• Stylized analysis of trade liberalization

 autarky \rightarrow free trade

What happens to trade and GDP when we open to trade?
Welfare: Open to trade

\[y^T = y^A = c^A \]

Welfare increases
Real GDP: Start in autarky

\[
GDP^A = p_1^A y_1^A + p_2^A y_2^A
\]
Real GDP: Open to trade

\[GDP^A = p_1^A y_1^A + p_2^A y_2^A \]

Real GDP decreases
Real GDP: Open to trade

\[GDP^A = p_1^A y_1^A + p_2^A y_2^A \]

What about capital accumulation and growth?
Dynamic Heckscher-Ohlin

- 2 goods, 2 factors, \(n \) countries, populations \(L_i \)
- Goods mobile across countries, factors not mobile
- Infinitely-lived consumers

\[
\max \sum_{t=0}^{\infty} \beta^t u(c_{1t}^i, c_{2t}^i) \\
\text{s.t.} \quad p_{1t} c_{1t}^i + p_{2t} c_{2t}^i + x_t^i = w_t^i + r_t^i k_t^i \\
k_{t+1}^i - (1 - \delta) k_t^i = x_t^i \\
c_{jt}^i \geq 0, \quad x_t^i \geq 0 \\
k_0^i = k_0^i.
\]

- Investment good

\[
k_{t+1}^i - (1 - \delta) k_t^i = x_t^i = f(x_{1t}^i, x_{2t}^i)
\]
Dynamic Heckscher-Ohlin

- 2 goods, 2 factors, n countries, populations L_i
- Goods mobile across countries, factors not mobile
- Infinitely-lived consumers

\[
\max \sum_{t=0}^{\infty} \beta^t u(c_{1t}^i, c_{2t}^i) \\
\text{s.t. } p_{1t} c_{1t}^i + p_{2t} c_{2t}^i + x_t^i = w_t^i + r_t^i k_t^i \\
k_{t+1}^i - (1-\delta)k_t^i = x_t^i \\
c_{jt}^i \geq 0, x_t^i \geq 0 \\
k_0^i = \bar{k}_0^i.
\]

- Investment good

\[
k_{t+1}^i - (1-\delta)k_t^i = x_t^i = f(x_{1t}^i, x_{2t}^i)
\]

This is potentially very complicated!
Simplifying assumptions

• Factor intensities are extreme:
 \[\phi_1(k_1, \ell_1) = k_1 \]
 \[\phi_2(k_2, \ell_2) = \ell_2. \]

• Utility function is transformation of investment function:
 \[u(c_1, c_2) = \log(f(c_1, c_2)). \]
Simplifying assumptions

• Factor intensities are extreme:
 \[\phi_1(k_1, \ell_1) = k_1 \]
 \[\phi_2(k_2, \ell_2) = \ell_2. \]

 Allows us to solve for equilibrium of world economy

• Utility function is transformation of investment function:
 \[u(c_1, c_2) = \log(f(c_1, c_2)). \]

 Allows us to solve for equilibrium of one-sector model
Simplifying assumptions

• Factor intensities are extreme:
 \[\phi_1(k_1, \ell_1) = k_1 \]
 \[\phi_2(k_2, \ell_2) = \ell_2. \]

 Allows us to solve for equilibrium of world economy

• Utility function is transformation of investment function:
 \[u(c_1, c_2) = \log(f(c_1, c_2)). \]

 Allows us to solve for equilibrium of one-sector model

Simpler Problem

We solve for the equilibrium of the world economy by solving

$$\max \sum_{t=0}^{\infty} \beta^t \log c_t$$

s.t. \(c_t + x_t = f(k_t, 1)\)

\(k_{t+1} - (1-\delta)k_t = x_t\)

\(c_t \geq 0, \ k_t \geq 0\)

\(k_0 = \bar{k}_0,\)

where \(c_t = f(c_{1t}, c_{2t}).\)
Simpler Problem

We solve for the equilibrium of the world economy by solving

$$\max \sum_{t=0}^{\infty} \beta^t \log c_t$$

s.t. $c_t + x_t = f(k_t, 1)$

$$k_{t+1} - (1 - \delta)k_t = x_t$$

$c_t \geq 0, \ k_t \geq 0$

where $c_t = f(c_{1t}, c_{2t})$.

Growth model in first-year macro,

especially case where $\delta = 1$ and $f(k, 1) = dk^{a_1}$.
Convergence of closed countries

\[k_{t+1} \]

\[k_t \]

\[\hat{k} \]

\[\bar{k}_0^i \]
Intuition

• In a world of closed countries,
 Rental rates higher in poorer countries than in richer,
 Poorer countries grow faster.

• In a world of open countries,
 Rental rates same in poorer countries as in richer,
 No convergence in cross section.
Proposition

Define GDP per capita in i:

$$y_t^i = p_{1t} y_{1t} + p_{2t} y_{2t} = r_t k_t^i + w_t = f(k_t^i, 1).$$

Suppose that $\delta = 1$, then

$$\frac{y_t^i - y_t}{y_t} = \frac{c_t / y_t}{c_0 / y_0} \left(\frac{y_t^i - y_0}{y_0} \right).$$
Proposition

Define GDP per capita in i:

$$y^i_t = p_{1t} y^i_{1t} + p_{2t} y^i_{2t} = r_t k^i_t + w_t = f(k^i_t, 1).$$

Suppose that $\delta = 1$, then

$$\frac{y^i_t - y_t}{y_t} = \frac{c_t / y_t}{c_0 / y_0} \left(\frac{y^i_0 - y_0}{y_0} \right).$$

Notice that

c_t / y_t comes from solution to the one-sector model

If c_t / y_t increases, income levels diverge.

If c_t / y_t decreases, income levels converge.
Proposition

\[\frac{y_t^i - y_t}{y_t} = \frac{c_t / y_t}{c_0 / y_0} \left(\frac{y_0^i - y_0}{y_0} \right) \]

\[f(x_1, x_2) = dx_1^{a_1} x_2^{a_2} \]

⇒ \(c_t / y_t \) constant

⇒ no convergence in cross section

\[f(x_1, x_2) = d \left(a_1 x_1^b + a_2 x_2^b \right)^{1/b}, \ b < 0 \]

⇒ \(c_t / y_t \) increases as the world economy grows

⇒ divergence in cross section
What happens to poor country’s welfare?

• Answer: it increases

 \[t = 1: \text{static gains due to change in prices} \]

 \[t > 1: \text{dynamic gains due to saving less} \]

• Gain depends on elasticity of substitution, factor intensities, discount factor.
What happens to poor country’s welfare?

• Answer: it increases

 \[t = 1: \text{static gains due to change in prices} \]

 \[t > 1: \text{dynamic gains due to saving less} \]

• Gain depends on elasticity of substitution, factor intensities, discount factor.

Trade equilibrium allocation is in the core: a closed economy always gains from opening to trade.
What happens to poor country’s real GDP?

• Answer: it decreases

 \(t = 1 \): static decrease due to change in prices
 \(t > 1 \): slower capital accumulation due to lower rental rate

• Loss depends on elasticity of substitution, factor intensities, discount factor.
Heterogeneous firm trade models
Heterogeneous firm models

Opening to trade

• Increases welfare

• Does not change real GDP (with popular functional forms)

Gibson (2007)
Heterogeneous firm models

- Consumers
 Preference for variety: $u(c) = (1/\rho)\log \int_z c(z)^\rho \, dz$

- Firms
 Monopolistic competition
 Heterogeneous productivities: $x \sim 1 - \gamma (\theta / x)^\gamma$
 Fixed cost of production

Melitz (2003), Chaney (2008)
Start in autarky

• Cutoff productivity

Firms with $x < \bar{x}_d^A$ do not produce

Firms with $x > \bar{x}_d^A$ produce for domestic market
Start in autarky

\bar{x}_d^A

density

exit

produce

productivity x
Open to trade

• 2 symmetric countries
• Additional fixed cost to export
• New cutoff productivity

Firms with $x < \bar{x}_e^T$ do not export
Firms with $x \geq \bar{x}_e^T$ export
Open to trade

density

\bar{X}_d^A \bar{X}_d^T \bar{X}_e^T productivity x

exit | domestic | export
Open to trade

Labor moves to more productive firms

\(\bar{X}_d^A \quad \bar{X}_d^T \quad \) productivity \(x \)

exit | domestic | export
What happens to welfare?

- More physical units of goods
- Gain depends on
 - Elasticity of substitution
 - Distribution of productivities

What happens to welfare?

- More physical units of goods
- Gain depends on
 - Elasticity of substitution
 - Distribution of productivities

In Melitz model, number of varieties consumed goes down.
What happens to real GDP?

\[GDP^A = \mu \int_{X_d}^{\infty} p^A(x) y^A(x) dF(x) \]

\[GDP^T = \mu \int_{X_d}^{\infty} p^A(x) y^T(x) dF(x) \]

With C.E.S. utility,

\[p^T(x) = p^A(x) = \frac{w}{\rho x} \]

More efficient firms have larger markets only because they charge lower prices.
What happens to real GDP?

- Labor moves from low productivity to high productivity firms
 Increases GDP
What happens to real GDP?

- Labor moves from low productivity to high productivity firms
 Increases GDP

- Labor moves from high price to low price firms
 Decreases GDP
What happens to real GDP?

• Labor moves from low productivity to high productivity firms
 Increases GDP

• Labor moves from high price to low price firms
 Decreases GDP

With C.E.S. and Pareto,
these two forces exactly cancel out.

GDP is unchanged.
Lessons from theory

• Match concepts in theory with those in data.

• Measure gains in welfare, not in GDP per capita.

• Tell Mexican friends not to worry.
Lessons from theory

- Match concepts in theory with those in data.
- Measure gains in welfare, not in GDP per capita.
- Tell Mexican friends not to worry.

...or should they?
What about China?
Chinese GDP per capita has grown.
Growth accounting for China

\[Y_t = A_t K_t^\alpha L_t^{1-\alpha} \]

\[\frac{Y_t}{N_t} = A_t^{1/(1-\alpha)} \left(\frac{K_t}{Y_t} \right)^{\alpha/(1-\alpha)} \frac{L_t}{N_t} \]
Growth accounting for China

\[
\frac{Y_t}{N_t} \\
\frac{L_t}{N_t} \\
\left(\frac{K_t}{Y_t}\right)^{\frac{\alpha}{1-\alpha}} \\
A_t^{\frac{1}{1-\alpha}}
\]
Chinese growth has been driven by productivity
Standard trade theory does not explain productivity growth.

What theories of openness can do so?

Incentives for internal reforms: Bajona-Chu (2008)